Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
Để P có giá trị nguyên thì :
2n - 3 chia hết cho n + 1
=> (2n - 3) - 2.(n + 1) chia hết cho (n + 1)
=> 2n - 3 - 2n - 2 chia hết cho n + 1
=> - 5 chia hết cho n + 1
=> n + 1 là Ư(5)
Mà Ư(5) = {- 5; - 1; 1; 5}
=> n + 1 thuộc {- 5; -1; 1; 5}
=> n thuộc {- 6; -2; 0; 4}
(Nhưng thật sự là bài lớp 6 mà, mình mới học lớp 6 thôi, ko lừa đâu)
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
Ta có \(\frac{2n+1}{2n-3}\) \(=\frac{2n-3+4}{2n-3}=1+\frac{4}{2n-3}\)
Để phân số \(\frac{2n+1}{2n-3}\) nguyên thì \(\frac{4}{2n-3}\) nguyên
=> 4 \(⋮\) 2n-3
hay 2n-3 \(\in\) Ư (4)={1;2;4;-1;-2;-4}
Ta có bảng sau
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | / | / | 1 | / | / |
Vậy n \(\in\) {2;1}