Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)
\(A=4x^2+4x+1-x^2+4-2x^2-2x\)
\(A=x^2+2x+5\)
b) Để A = 4
=> \(x^2+2x+5=4\)
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c) Ta có A = x2 + 2x + 5
A = ( x + 1 )2 + 4
=> \(A\ge4>0\left(đpcm\right)\)
a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)
\(=4x^2+4x+1-x^2+4-2x^2-2x\)
\(=x^2+2x+5\)
b,\(A=x^2+2x+5=4\)
\(\Rightarrow x^2+2x+5-4=0\)
\(x^2+2x+1=0\)
\(\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)
Hay: A > 0 => đpcm
=.= hok tốt!!
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
\(E=x^2+3x+3\)
\(E=\left(x^2+3x+\frac{9}{4}\right)+\frac{3}{4}\)
\(E=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow E\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)
c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)
a: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
b: B=x^2-6x+8+3
=x^2-6x+11
=x^2-6x+9+2
=(x-3)^2+2>=2>0 với mọi x
c: =x^2-4xy+4y^2+x^2+2x+1+4
=(x-2y)^2+(x+1)^2+4>=4>0 với mọi x,y