Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
`A=x^2 -4x+18`
`=x^2 -4x+4+14`
`=(x-2)^2 +14`
Có `(x-2)^2 >=0 AAx`
`=> (x-2)^2 +14>= 14>0 AAx`
Vậy ....
`B=x^2 -x+2`
`=x^2 -x+1/4+7/4`
`=(x-1/2)^2 +7/4`
có `(x-1/2)^2 >=0 AAx`
`=> (x-1/2)^2 +7/4>=7/4>0 AAx`
Vậy ...........
`C=x^2 +2y^2 -2xy-2y+15`
`=x^2 -2xy+y^2 +y^2 -2y+1+14`
`=(x-y)^2 +(y-1)^2 +14`
Có `(x-y)^2 >=0 AAx,y` ; `(y-1)^2 >=0 AAy`
`=>(x-y)^2 +(y-1)^2 +14 >=14>0 AAx;y`
Vậy
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Ta có : A = x2 - 6x + y2 + 8y + 27
= (x2 - 6x + 9) + (y2 + 8y + 16) + 2
= (x2 - 2.x.3 + 32) + (y2 + 2.x.4 + 42) + 2
= (x - 3)2 + (y + 4)2 + 2
Vì (x - 3)2 và (y + 4)2 \(\ge0\forall x\in R\)
Nên : (x - 3)2 + (y + 4)2 \(\ge0\forall x\in R\)
Do đó : (x - 3)2 + (y + 4)2 + 2 \(\ge2\forall x\in R\)
Hay (x - 3)2 + (y + 4)2 + 2 \(>0\forall x\in R\)
Vậy biểu thức A luôn luôn dương với mọi x thuộc R (đpcm)
A=(x2 - 2.3x + 9) + ( y2 + 2.4y + 16 ) + 2
A=(x2 - 2.3x + 32) + (y2 + 2.4y +42) + 2
A=(x-3)2 + (y+4)2 + 2
Vì (x-3)2 + (y+4)2 luôn > hoặc = 0 với mọi x;y
Nên (x-3)2 + (y+4)2 + 2 luôn > hoặc = 2 với mọi x; y
Vậy A luôn dương(>0)