Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
A = x2 + 6x + 11 = ( x2 + 6x + 9 ) + 2 = ( x + 3 )2 + 2 ≥ 2 > 0 ∀ x ( đã sửa )
B = x2 - 4x + 12 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 > 0 ∀ x ( đpcm )
C = x2 + 4x + 6 = ( x2 + 4x + 4 ) + 2 = ( x + 2 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
D = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
P = x2 - 2x + 2 = (x – 1)2 + 1
Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x
Vậy P luôn lớn hơn 0 với mọi x.
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
câu a hình như bạn ghi sai đề rồi
câu b:
Ta có: \(x^2-4x+12=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\text{}\left(x-2\right)^2+8\ge8>0\forall x\in Q\)
Do đó: \(x^2-4x+12>0\forall x\in Q\)(đpcm)