Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0
B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0
C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0
a, chỉ có luôn ko dương thôi bạn ạ =)))
\(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
luôn âm chứ bạn :)\
3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )
6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
\(B=x^2+x+5=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{19}{4}=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)
=>B luôn dương
---
\(D=\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=\left(x^2-2.x.4+16\right)+3\)
\(=\left(x-4\right)^2+3\ge3>0\)
=>D luôn dương
\(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\forall x\)
Mà 1>0
\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2\) + (y-2)^2 + 1
Xét nữa là xong
\(x^4+x^2+2=\) \(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>0\)với mọi x
\(\left(x+3\right)\left(x-11\right)+2014=\) \(x^2-11x+3x-33+2014\)
\(=\) \(x^2-8x+1981\)
\(=\) \(x^2-2.x.4+16+1965\)
\(=\) \(\left(x-4\right)^2+1965>0\)với mọi x
\(x^2+x+3\)
\(=x^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
\(\Rightarrowđpcm\)
x^2 + x + 3
= x^2 + x + 1/4 + 11/4
= (x+1/2)^2 + 11/4 \(\ge\) 11/4 > 0 với mọi x