Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3a + 15b + 16 = 19185 \(\Rightarrow\) 3(a + 5b) = 19185 - 16 = 19169
Ta có 3(a - 5b) chia hết cho 3 (vì thừa số 3 chia hết cho 3)
mà 19169 không chia hết cho 3 (vì 1 + 9 + 1 + 6 + 9 = 26 không chia hết cho 3)
nên đẳng thức sai
b) 5a + 15b + 25 = 2007
5(a + 3b + 5) = 2007
Ta có 5(a + 3b + 5) chia hết cho 5 (vì thừa số 5 chia hết cho 5)
mà 2007 không chia hết cho 5 (vì số tận cùng là 7)
nên đẳng thức sai
c) 18a + 27b + 36 = 2006
9(2a + 3b + 4) = 2006
Ta có 9(2a + 3b + 4) chia hết cho 9 (vì thừa số 9 chia hết cho 9)
mà 2006 không chia hết cho 9 (vì 2 + 0 + 0 + 6 = 8 không chia hết cho 9)
nên đẳng thức sai
a:
\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)
Đặt \(S=1^2+2^2+...+n^2\)
Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)
=>(1) đúng với n=1
Giả sử (1) đúng với n=k
=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Ta sẽ cần chứng minh (1) đúng với n=k+1
Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)
Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)
\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)
\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)
\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)
\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)
=>(1) đúng
=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)
\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)
\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)
\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)
\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)
\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)
\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)
\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)
\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)
=>A chia hết cho 23 và 11
=> 8a + 6b = 1871
Mà 8a là số chẵn và 6b là số chẵn cộng lại ra số chẵn
Mà 1871 là số lẻ nên đẳng thức này luôn luôn sai
Không biết bạn đã biết hằng đẳng thức chưa vì mk chỉ biết mỗi cái dùng HĐT để CM thôi :v
Sửa lại đề tí!
\(\dfrac{2ab}{a+b}\le\dfrac{a+b}{2}\) (a + b \(\ne\) 0)
\(\Rightarrow\) (a + b)2 \(\ge\) 4ab
\(\Rightarrow\) a2 + 2ab + b2 \(\ge\) 4ab
\(\Rightarrow\) a2 - 2ab + b2 \(\ge\) 0
\(\Rightarrow\) (a - b)2 \(\ge\) 0
Vì (a - b)2 \(\ge\) 0 luôn đúng với mọi a + b \(\ne\) 0 \(\Rightarrow\) đpcm
Chúc bn học tốt!