K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

trò gì mà vừa đi vừa chjy

21 tháng 1 2022

NGÁO À

1 tháng 10 2015

a)  (Em xem lại , câu này em hỏi rồi nhé)

A = 1.1 + 2.(1 + 1) + 3. (1 + 2) + ...+ 10.(1 + 9)

A = 1 + 2 + 1.2 + 3 + 2.3 + ...+ 10 + 9.10

A = (1 + 2+ 3 + ...+ 10) + (1.2 + 2.3 + ...+ 9.10)

Tính 1 + 2 + 3 + ...+ 10 = (1 + 10).10 : 2 = 55

B = 1.2 + 2.3 + ...+ 9.10 

3.B = 1.2.3 + 2.3.(4 - 1) + ...+ 9.10.(11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...- 8.9.10 + 9.10.11

3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 330

Vây A = 55 + 330 = 385

b) Số số hàng: (2n - 1 - 1): 2 + 1 = n

M = (1 + 2n - 1). n : 2 = n=> M là số chính phương

1)Số 100! khi phân tích ra thừa số nguyên tố có dạng :100!=2^x.3^y.5^z.7^t ... với x;y;z;t thuộc Nsao.Tìm x,y,z,t , ...2)Cho A = 1! +2! +3! +4! +5! +6! +...+2015! 1/ Tìm chữ số tận cùng của A 2/ Chứng minh A không phải là số chính phương 3/ Chứng minh A là hợp số.3)a chia hết cho 3. Số b ko chia hết cho 3 . nhưng a+b lại chia hết cho 3 thì số a và b là bao nhiêu4)tìm số tự nhiên  a biết rằng nếu lấy 264 chia...
Đọc tiếp

1)Số 100! khi phân tích ra thừa số nguyên tố có dạng :

100!=2^x.3^y.5^z.7^t ... với x;y;z;t thuộc Nsao.

Tìm x,y,z,t , ...

2)Cho A = 1! +2! +3! +4! +5! +6! +...+2015! 
1/ Tìm chữ số tận cùng của A 
2/ Chứng minh A không phải là số chính phương 
3/ Chứng minh A là hợp số.

3)a chia hết cho 3. Số b ko chia hết cho 3 . nhưng a+b lại chia hết cho 3 thì số a và b là bao nhiêu

4)tìm số tự nhiên  a biết rằng nếu lấy 264 chia cho a thì dư 24 nếu lấy 363 chia cho a thì dư 43 

5)Tính giá trị biểu thức A = 1^3 + 2^3 + 3^3 + ... + 100^3.

6)Tinh nhanh : A = 1^2+2^2+3^2+...+100^2

7)Tính giá trị biểu thức A = 1.2.3 + 3.4.5 + 5.6.7 + … + 99.100.101.

8)tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia cho 30 thì dư 7 và chia cho 40 thì dư 1

9)Tính tổng các số tự nhiên n<20 biết rằng 4mũ n - 1 chi hết cho 5

10)tìm n sao cho : 3n +40 chia hết n+3

11) tìm n : n mũ 2+36 chia hết n -1

12) Tìm hai số a và b biết ab bằng 25200 và (a;b) = 60

13)Tìm hai số tự nhiên a và b biết (a;b) = 15 và [a;b] = 165

14) Chứng minh rằng: Nếu (7a + 11b) ⋮ 3 thì (2a + b) ⋮ 3.

em thanks mọi người trước

XIN ONLINE MATH ĐỪNG TRỪ ĐIỂM EM ĐANG CẦN GẤP

0
15 tháng 10 2016

\(1^3+2^3+3^3+4^3+5^3+6^3\)

\(=1+8+27+64+125+216\)

\(=441=21^2\)

Mình có 1 cách chứng minh biểu thức này đúng với mọi số tự nhiên n :) Bạn có thể tham khảo.

Ta sẽ sử dụng quy nạp.

Nếu bạn chưa học quy nạp thì mình giải thích ngắn gọn thế này : Bây giờ mình cần chứng minh biểu thức nào đó đúng với mọi n, ví dụ A chia hết cho n với mọi n, hoặc A > n với mọi n :). Số n chỉ là mình đặt ra, bạn có thể đặt a,b,c,d,... tùy ý, miễn là nó tượng trưng.

Bây giờ ta có 1 số bất kỳ thỏa mãn biểu thức đó, tức là giả sử tồn tại số n nào đó mà khiến cho biểu thức đúng, ta chỉ cần chứng minh số liền sau của k cũng thỏa mãn thì biểu thức hoàn toàn đúng với mọi n.

Ta sẽ chứng minh \(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)

Với n = 1 thì đẳng thức đúng.

Với n > 1. Coi tồn tại số n thỏa mãn đẳng thức trên. \(\Rightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)

Ta sẽ chứng minh n + 1 cũng thỏa mãn.

Ta có :

\(1^3+2^3+...+n^3+\left(n+1\right)^3\)

\(=\left(1+2+3+...+n\right)^2+\left(n+1\right)^3\)

\(=\left[\frac{n\left(n+1\right)}{2}\right]^2+\left(n+1\right)^3\)

\(=\left(n+1\right)^2.\frac{n^2}{4}+\left(n+1\right)^2\frac{4n+4}{4}\)

\(=\frac{\left(n+1\right)^2\left[n^2+4n+4\right]}{4}\)

\(=\frac{\left(n+1\right)^2.\left(n+2\right)^2}{4}\)

\(=\left[\frac{\left(n+1\right)\left(n+2\right)}{2}\right]^2\)

Chắc chắn \(\left(n+1\right)\left(n+2\right)\)chia hết cho 2, nên biểu thức đó là một số chính phương.

Vậy biểu thức này đúng với mọi n :\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\) 

Ví dụ bài của bạn vừa rồi :

\(1^3+2^3+...+6^3=\left(1+2+3+...+6\right)^2=21^2\)

19 tháng 6 2015

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

3 tháng 12 2015

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương