Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x\cdot cos^2x+cos^4x\right)\)
\(+\left(sin^2x+cos^2x\right)^2-2sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=sin^4x+cos^4x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=1-2\cdot sin^2x\cdot cos^2x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=2\)
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2xcos^2x+sin^2x+cos^2x\)
\(=1+1=2\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
a: \(VT=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\)
\(=\sin^4x-sin^2x\cdot cos^2x+cos^4x\)
\(=\left(sin^2x+cos^2x\right)^2-2sin^2x\cdot cos^2x-sin^2x\cdot cos^2x\)
\(=1-3\cdot sin^2x\cdot cos^2x\)
b: Đề sai rồi bạn. Nếu như đề thì nó ra là \(0=2\cdot\sin^2a\) thì cái này không đúng với mọi a nha bạn
Có: \(\sin^2+\cos^2=1\)
=> \(\sin^2=1-\cos^2\)
Ta có:
\(\cos^4a+\sin^2a\cos^2a+\sin^2a=\cos^4a+\left(1-\cos^2\right)a\cos^2a+\sin^2\)
\(=\cos^4a-\cos^4a+\cos^2a+\sin^2a=\cos^2a+\sin^2a=1\)
Ta có : tanx.cotx =1 = sin2 x+ cos2x
sin6x +3sin2x.c0s2x(sin2x+cos2x) + cos6x = (sin2x + cos2x)3 =13 =1