K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

\(A=\left(\frac{3x}{x^2-4}-\frac{1}{x-2}-\frac{2}{x+2}\right):\left(1+\frac{x^2+4}{4-x^2}\right)=\left(\frac{3x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}-\frac{2}{x+2}\right):\left(\frac{4-x^2+x^2+4}{4-x^2}\right)\)

\(=\left(\frac{3x-x-2-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\frac{4}{4-x^2}=\frac{2}{x^2-4}:-\frac{4}{x^2-4}=-\frac{1}{2}\)

1 tháng 8 2019

\(A=\left(x-1\right)^4-x^2\left(x^2+6\right)+4x\left(x^2+1\right)\)

\(A=x^4-4x^3+6x^2-4x+1-x^4-6x^2+4x^3+4x\)

\(A=\left(x^4-x^4\right)+\left(-4x^3+4x^3\right)+\left(6x^2-6x^2\right)+\left(-4x+4x\right)+1\)

\(A=1\)

Vậy biểu thức không phụ thuộc vào x

22 tháng 11 2017

a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1

   = (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1

=> phân thức trên ko phụ thuộc vào biến x

=> ĐPCM

Nếu đúng thì k mk nha

6 tháng 8 2017

ta có: A= (x-1)^2 +(x+1)(3-x)

<=>A= x^2-2x+1 +3x-x^2-x+3

<=>A=4

Vậy gt của A ko phụ thuộc vào biến

1 tháng 8 2016

\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right) \left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y

1 tháng 12 2021

\(A=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}=\dfrac{4\left(2x+4\right)}{2x+4}=4\left(đpcm\right)\)

1 tháng 12 2021

\(A=\dfrac{\left(x+4\right)^2-x^2}{2x+4}=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}\)

\(=\dfrac{4\left(2x+4\right)}{2x+4}=4.\)

=> Giá trị của biểu thức trên không phụ thuộc vào x.