Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-5x+7\)
\(=x^2-5x+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x-\dfrac{5}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow A>0\)
Vậy..
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
a) x2 + x + 2
= (x2 + x + 1) + 1
= (x + 1)2 + 1 > 0
b) x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
c) x(x - 4) + 10
= x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
d) x(2 - x) - 4
= -x2 + 2x - 4
= -(x2 - 2x + 4)
= -[(x2 - 2x + 1) + 3]
= -[(x - 1)2 + 3] < 0
e) x2 - 5x + 2017
= (x2 - 5x + 25) + 2012
= (x - 5)2 + 2012 > 0
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
\(a,A=4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy......
\(b,B=4-x^2+2x\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy......
B2:
a) ta có: \(a^2+b^2-2ab\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
b) Ta có: \(a^2+b^2\ge-2ab\)
\(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
Em thử nhé !
Bài 1 :
a) \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2\right)+7\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy : \(A_{max}=7\Leftrightarrow x=2\)
b) \(B=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2.x.1+1^2\right)+5\)
\(\Leftrightarrow B=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy : \(B_{max}=5\Leftrightarrow x=1\)
Ta có :
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)
\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))
\(=6\left(x+\frac{1}{x}\right)\)
Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)
\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))
\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)
\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)
Do đó \(x^3+\frac{1}{x^3}=6.3=18\)
Ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)
Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)
\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)
\(\Rightarrow x^5+\frac{1}{x^5}=125\)
Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)