K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

28 tháng 12 2021

\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)

\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)

vậy bt A luôn......

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

21 tháng 9 2022

Không biê

\(A=-x^2+3x-7\)

\(=-\left(x^2-3x+7\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)

20 tháng 9 2021

\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

15 tháng 10 2018

\(-9x^2+12x-15\)

\(=-\left[\left(3x\right)^2-2.3x.2+2^2\right]-11\)

\(=-\left(3x-2\right)^2-11\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11\le-11\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11< 0\forall x\)

\(\Rightarrow-9x^2+12x-15< 0\forall x\)

                                           đpcm

Tham khảo nhé~

6 tháng 8 2018

Ta có: \(x^2-3x+7=x^2-3x+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)

Vì: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall x\)

Hay : Biểu thức luôn dương với mọi giá trị của biến

=.= hok tốt!!

Ta có:

\(2x-x^{^2}-2\)

\(=-\left(x^{^2}-2x+2\right)\)

\(=-\left(x^{^2}-2x+1\right)\)

\(=-\left(x^{^2}-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Do \(-\left(x-1\right)^2\le0\)nên \(-\left(x-1\right)^2-1=2x-x^{^2}-2< 0\)hay biểu thức đề cho luôn âm (đpcm)

14 tháng 8 2021

\(2x-x^2-2=-\left(x-1\right)^2-1\le-1< 0\forall x\)

5 tháng 11 2017

Q = x^2-12x+36+5

= x^2 - 2.x.6 + 6^2 + 5 = (x-6)^2 + 5 >=5 với mọi x

=> Q luôn ko âm với mọi giá tri biến ( ĐPCM )

5 tháng 11 2017

Ta có: Q = x^2 - 12x + 41

= x^2 - 2.x.6 + 62 + 5

= (x-6)2 + 5 
Vì bình phương 1 số luôn dương và 5>0 nên Q >0