K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

\(A=3x^2-3x+7-4x^2+5x-3+x^2-2x\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-3x+5x-2x\right)+4\)

=4

6 tháng 8 2019

Giá trị của đa thức sau khi bỏ dấu ngoặc tại x = 1 

\(\Leftrightarrow A_{\left(1\right)}=\left(3-4.1+1^2\right)^{2004}\left(3-4.1+1^2\right)^{2005}=0\)

6 tháng 8 2019

Tổng các hệ số của đa thức A(x) nhân được sau khi bỏ dấu ngoặc chính bằng A(1).

Ta có: \(A\left(1\right)=0^{2004}.8^{2005}\)

\(\Leftrightarrow A\left(1\right)=0\)

Chúc bạn học tốt ! truongthienvuong

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:
a)

\(2x^2-x=0\)

\(\Leftrightarrow x(2x-1)=0\Rightarrow \left[\begin{matrix} x=0\\ 2x-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức là $0$ và $\frac{1}{2}$

b)

\(x^2+4x+3=0\)

\(\Leftrightarrow x^2+x+3x+3=0\Leftrightarrow x(x+1)+3(x+1)=0\)

\(\Leftrightarrow (x+1)(x+3)=0\Rightarrow \left[\begin{matrix} x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=-3\end{matrix}\right.\)

Vậy nghiệm của đa thức là $-1$ và $-3$

c)

\(4x^2-4x+1=0\)

\(\Leftrightarrow 4x^2-2x-2x+1=0\)

\(\Leftrightarrow 2x(2x-1)-(2x-1)=0\Leftrightarrow (2x-1)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệm của đa thức là $x=\frac{1}{2}$

d)

\(x^2-4x=0\)

\(\Leftrightarrow x(x-4)=0\Rightarrow \left[\begin{matrix} x=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=4\end{matrix}\right.\)

Vậy nghiệm của đa thức là $0$ và $4$

e)

\(x^2+3x+2=0\)

\(\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x(x+1)+2(x+1)=0\)

\(\Leftrightarrow (x+1)(x+2)=0\Rightarrow \left[\begin{matrix} x=-1\\ x=-2\end{matrix}\right.\)

Vậy........

f)

\(x^2-6x+9=0\)

\(\Leftrightarrow x^2-3x-3x+9=0\)

\(\Leftrightarrow x(x-3)-3(x-3)=0\Leftrightarrow (x-3)^2=0\Rightarrow x=3\)

Vậy.......

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

5 tháng 2 2018

1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)

\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)

2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)

tương tụ lm tiếp nhe buồn ngủ quá rồi !

\(D=\left(2-3\right)^3+2x\left(x-3\right)+\left(3x+1\right)\left(9x^2-3x+1\right)-6x\left(7x-3\right)+3x^3\)

\(=-1+2x^2-6x+27x^3-9x^2+3x+9x^2-3x+1-42x^2+18x+3x^3\)

\(=-40x^2+12x+30x^3\)

=> Biểu thức có phụ thuộc vào biến x 

Vậy đề sai .

2 tháng 8 2020

\(A=7.\left(x^2-5x+3\right)-x.\left(7x-35\right)-14\)

\(A=7x^2-35x+21-7x^2+35x-14\)

\(A=7\)

       \(B=\left(4x-5\right).\left(x+2\right)-\left(x+5\right).\left(x-3\right)-3x^2-x\)

\(B=4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x\)

\(B=5\)

     \(C=\left(6x-5\right).\left(x+8\right)-\left(3x-1\right).\left(2x+3\right)-9.\left(4x-3\right)\)

\(C=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)

\(C=-10\)

Học tốt