\(a^2+b^2\) chia hết cho \(21\)thì 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

??????

18 tháng 9 2016

a) Ta có:
\(A=2+2^2+2^3+...+2^{24}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{22}+2^{23}+2^{24}\right)\)

\(\Rightarrow A=14+...+2^{21}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{21}.14\)

\(\Rightarrow A=\left(1+...+2^{21}\right).14⋮14\)( đpcm )

\(A=2+2^2+2^3+...+2^{24}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{21}+2^{22}+2^{23}+2^{24}\right)\)

\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{21}\left(1+2+2^2+2^3\right)\)

\(\Rightarrow A=2.15+...+2^{21}.15\)

\(\Rightarrow A=15\left(2+...+2^{21}\right)⋮15\left(đpcm\right)\)

 

 

18 tháng 9 2016

b) Mk sửa đề chút là A chia 16 dư 15 nhé

Ta có:

\(A=2+2^2+2^3+...+2^{24}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{20}+2^{21}+2^{22}+2^{23}+2^{24}\right)\)

\(\Rightarrow A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{20}\left(1+2+2^2+2^3+2^4\right)\)

\(\Rightarrow A=2.31+...+2^{20}.31\)

\(\Rightarrow A=\left(2+2^{20}\right).31\) 

Vì 31 chia 16 dư 15 nên suy ra đpcm

27 tháng 9 2019

1) 3^1994+4^1993-3^1992

  = 3^1992.(9+3-1)=3^1992.11 chia hết cho 11

=> 3^1994+3^1993-3^1992 chia hết cho 11

27 tháng 9 2019

Có ai bt bài 2 ko z 

10 tháng 3 2019

a)\(\left|x-y-2\right|^{2017}\ge0;\left(x+y-8\right)^{2018}\ge0\)

Nên VT \(\ge0\).Kết hợp đề bài suy ra \(VT=0\)

Dấu "=' xảy ra khi \(\hept{\begin{cases}x-y-2=0\\x+y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\\x+y=8\end{cases}}\Leftrightarrow2x=10\Leftrightarrow x=5\)

Suy ra \(5-y=2\Leftrightarrow y=3\)

Vậy ....

b)Đặt \(\overline{abcd}⋮29\Leftrightarrow1000a+100b+10c+d⋮29\)

Do 1000; 100; 10; 1 không chia hết cho 29 nên \(a;b;c;d⋮29\)

Nên \(a;3b;9c;27d⋮29\Rightarrow a+3b+9c+27d⋮9^{\left(đpcm\right)}\)

Bài 2: 

a: \(3B=3+3^2+3^3+...+3^{90}\)

\(\Leftrightarrow2B=3^{90}-1\)

hay \(B=\dfrac{3^{90}-1}{2}\)

b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)

 

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

1 tháng 8 2016

b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại

c) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^n.4+3^n.1-2^n.1\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n.2^{n-1}\right)\)