\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)

P/s: Ku...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

=>  \(A+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{a+b}.\frac{1}{b+c}.\frac{1}{c+a}}=\frac{9}{2}\)   (AM - GM)

=>  \(A\ge\frac{9}{2}-3=\frac{3}{2}\)  (đpcm)

12 tháng 10 2018

Đặt \(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(A=\frac{a^2}{ba+ca}+\frac{b^2}{cb+ba}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Cauchy-schwarz ta có: 

\(A=\frac{a^2}{ba+ca}+\frac{b^2}{cb+ba}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2.\left(ab+bc+ca\right)}\)

Ta c/m BĐT phụ \(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)( tự c/m)

Áp dụng: 

\(A\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)

                                                 đpcm

Tham khảo nhé~

6 tháng 4 2017

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)

7 tháng 4 2017

BĐT trên \(=\frac{9}{2}\). Còn cách làm thì giống bạn alibaba nguyễn .

~~~ Chúc bạn học giỏi ~~~

19 tháng 12 2017

Áp dụng BĐT Cauchy cho 2 số không âm, ta có: 

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{b+c}{4}+\frac{a+b}{4}+\frac{c+a}{4}\)

\(\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}+2\sqrt{\frac{b^2}{c+a}.\frac{c+a}{4}}+2\sqrt{\frac{c^2}{a+b}.\frac{a+b}{4}}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

17 tháng 12 2017

Bạn tự chứng minh BĐT phụ: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)    \(x;y;z>0\)

Áp dụng, ta có:

\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{c}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(\Rightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

21 tháng 7 2020

Với a,b,c > 0

Áp dụng bđt cosi cho 2 số dương \(\frac{a^2}{b^2}\)và \(\frac{b^2}{c^2}\), ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\) (1)

CMTT: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\)(2)

 \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)(3)

Từ (1), (2) và (3) cộng vế theo vế:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{a}{c}+2\frac{c}{b}+2\frac{b}{a}\)

<=> \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

<=> \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

flOnyqL.png (cần thì ib t gửi link cho)

31 tháng 1 2017

\(\frac{a}{a+b}\)>=  \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b ) 

\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )

\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\)  = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )

Từ 3 điều này suy ra

\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>=  \(\frac{3}{2}\)

31 tháng 1 2017

dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)

a/a+b +b/b+c +c/c+a >= 3/2

<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1

<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2

<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2

<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))