Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(8^5+2^{11}=34816\)
Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)
\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)
b) \(8^7-2^{18}=1835008\)
Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)
\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)
Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17
b/ Vì 87 = (23)7 = 221 nên 87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14
c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.
Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)
chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19
Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.
Tổng của nó không chia hết cho 2 thì chắc chắn sẽ có 1 số lẽ và 1 số chẵn
Mà khi có số chẵn thì chắc chắn tích của nó chia hết cho 2
+ Tổng hai số tự nhiên không chia hết cho 2 thì tổng của 2 số tự nhiên đó là 1 số lẻ
+ Tổng của hai số tự nhiên cùng lẻ (Hoặc cùng chẵn) là 1 số chẵn, tổng hai số tự nhiên trong đó 1 số lẻ, số còn lại chẵn thì tổng của chúng là 1 số lẻ
=> Trong hai số tự nhiên đó sẽ có 1 số là số lẻ và số còn lại là số chẵn
+ Tích của 1 số chẵn với 1 số lẻ là 1 số chẵn
=> tích của chúng chia hết cho 2
Góc AMK là góc ở đỉnh M của tam giác ABM nên
GÓC AMK > GÓC ABK
GÓC KMC LÀ GÓC NGOÀI Ở ĐỈNH M CỦA TAM GIÁC CBM NÊN
KMC>CBK
SUY RA AMK+KMC>ABK+CBK
DO ĐÓ GÓC AMC > GÓC ABC
Em tham khảo nhé!
Câu hỏi của ICHIGO HOSHIMIYA - Toán lớp 7 - Học toán với OnlineMath
Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b 0. ... Tập hợp số hữu tỉ là tập hợp đếm được. Các số thực không phải là số hữu tỷ được gọi là các số vô tỷ.
Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b 0. ... Tập hợp số hữu tỉ là tập hợp đếm được. Các số thực không phải là số hữu tỷ được gọi là các số vô tỷ.
KẺ AH vuông góc với AB
Xét tam giác ABH vuông tại H và TAm giacs ACH vuông tại H có :
AB = AC ( GT )
AH chung
=> Tam giác ABH = ACH ( c.h - c.g.v)
=> ABH = ACH ( 2 .g . t .ư)
HAy ABC = ACB => B = C
Câu 3:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
EB chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó;ΔABE=ΔHBE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra:EK=EC
d: Ta có: AE=EH
mà EH<EC
nên AE<EC
Câu 2:
Xét ΔABC có \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow\widehat{ACB}+\widehat{ABC}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{OBC}+\widehat{OCB}=90^0-\dfrac{1}{2}\widehat{A}\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
\(\Leftrightarrow\widehat{BOC}=180^0-90^0+\dfrac{1}{2}\widehat{A}=90^0+\dfrac{\widehat{A}}{2}\)
Câu 1 : C
Câu 2 : C
Câu 3 : A B C D M K H 1 2
a) Xét tam giác AMB và tam giác DMC , có :
AM = DM ( gt )
BM = CM ( gt )
góc AMB = góc DMC ( đối đỉnh )
=> tam giác AMB = tam giác DMC
=> DC = AB ( hai cạnh tương ứng )
Vậy DC = AB
b) Xét tam giác AKM và tam giác DHM , có :
góc AKM = góc DHM ( = 90o )
góc M1 = góc M2 ( đối đỉnh )
MA = MD ( gt )
=> tam giác AKM = tam giác DHM ( g-c-g )
=> HD = AK ( hai cạnh tương ứng )
=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy HD = AK ; HD // AK ( đpcm )
Cái bài này lớp 7 chắc ???
Trong toán học, bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
\(\frac{a+b}{2}\)\(\ge\)\(\sqrt{ab}\)
Đẳng thức xảy ra khi và chỉ khi \(a\)\(=\)\(b\)
\(\frac{x_1+x_2+...+x_n}{n}\)\(\ge\)\(\sqrt[n]{x_1\times x_2\times...\times x_n}\)
Dấu "=" xảy ra khi và chỉ khi x1 = x2 = ... = xn