K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:

\(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:

\(b^2< ab+bc;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Đề sai với $b=0,1; c=0,2; a=0,25$

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

1: (a-1)(a-3)(a-4)(a-6)+9

=(a^2-7a+6)(a^2-7a+12)+9

=(a^2-7a)^2+18(a^2-7a)+81

=(a^2-7a+9)^2>=0

b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)

a^2-4a+1=0

=>a=2+căn 3 hoặc a=2-căn 3

=>A=11-4căn 3 hoặc a=11+4căn 3

9 tháng 12 2021

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)