Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD
Gọi H là giao điểm của AG với BC
Xét ΔABC có
G là trọng tâm
H là giao điểm của AG với BC
Do đó: H là trung điểm của BC và \(AG=2GH;GH=\dfrac{1}{3}HA\)
Xét ΔHAB có GD//AB
nên \(\dfrac{HD}{HB}=\dfrac{HG}{HA}\)
=>\(\dfrac{HD}{HB}=\dfrac{1}{3}\)
=>\(\dfrac{HD}{DB}=\dfrac{1}{2}\)
=>\(\dfrac{BD}{BH}=\dfrac{2}{3}\)
=>\(BD=\dfrac{2}{3}BH=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{3}BC\)