\(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)

Đẳng thức này đúng với mọi số x,y,z

Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)

28 tháng 3 2016

x,y,z phải là các cạnh trong tam giác chơ

10 tháng 12 2016

\(VP=\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+2xy+2xz+y^2+2yz+z^2-x^2-y^2-z^2\)

\(=2xy+2yz+2xz=2\left(xy+yz+xz\right)=VP\)

Suy ra điều phải chứng minh

 

 

(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0

=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0

=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0

=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz

=>x^2+y^2+z^2 >= xy+yz+xz

26 tháng 3 2016

nhần đổi của  về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá

10 tháng 8 2017

Hình như sai đề

11 tháng 8 2017

thế ề như nào bạn

23 tháng 1 2017

Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)

Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Vậy ta có đpcm

6 tháng 4 2017

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

6 tháng 4 2017

cảm ơn bạn nhiều

22 tháng 9 2016

Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\) 

\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)

\(=2xy+2yz+2xz\)

\(=2\left(xy+yz+xz\right)\)


 

22 tháng 9 2016

\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)

Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)

24 tháng 1 2017

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)

\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)

\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)

\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)

\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)

\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)

\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)

\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)

\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)

Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)