\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}>=4\left(\frac{a}{b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Ta có:\(VT=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\)

Xét:\(\left(x-y\right)^2\ge0\forall x,y\)

    \(\Leftrightarrow x^2+y^2\ge2xy\)

     \(\Leftrightarrow\frac{x^2+y^2}{xy}\ge2\)

     \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT \(\left(1\right)\)ta được:

\(VT\ge6\)

Ta có:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

      \(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

       \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(\Rightarrow VP\ge4\left(\frac{9}{2}-3\right)=6\)

Trừ vế với vế ta được:

\(VT-VP\ge0\Rightarrow VT\ge VP\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b=c\)

^^

28 tháng 4 2019

Con Chim 7 Màu sai rồi nha =))

VT > 6 và VP > 6 thì VP - VT > 0 chứ ko chỉ VT - VP > 0 nhé =)) 

Lời giải như sau :

Bài 1, \(CMR:\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a;b;c>0\right)\)

Áp dụng bđt quen thuộc \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) được

\(\frac{4}{b+c}\le\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{4a}{b+c}\le\frac{a}{b}+\frac{a}{c}\)

Chứng mình tương tự \(\frac{4b}{c+a}\le\frac{b}{c}+\frac{b}{a}\)

                                      \(\frac{4c}{a+b}\le\frac{c}{a}+\frac{c}{b}\)

Cộng 3 vế của bđt lại ta được

\(4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\left(Đpcm\right)\)
Dấu "=" tại a = b = c

_______________________________________________________________________

Bài 2 , CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(a;b;c>0\right)\)

Áp dụng bđt Cô-si có

\(a+b+c=a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

\(\Rightarrow\frac{2}{a+b+c}\le\frac{1}{\sqrt{a\left(b+c\right)}}\)

\(\Rightarrow\frac{2a}{a+b+c}\le\sqrt{\frac{a}{b+c}}\)(Nhân cả 2 vế với a > 0)

C/m tương tự \(\frac{2b}{a+b+c}\le\sqrt{\frac{b}{a+c}}\)

                        \(\frac{2c}{a+b+c}\le\sqrt{\frac{c}{a+b}}\)

Cộng 3 vế của 3 bđt lại được

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" ko xảy ra nên ta được đpcm

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z