K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

12 tháng 6 2017

áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

                                vì a+b+c=1 => dpcm

12 tháng 6 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)

<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9     (*)

áp đụng cô si

\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

tương tự

\(\frac{a}{c}+\frac{c}{a}>=2\)

\(\frac{b}{c}+\frac{c}{b}>=2\)

=> (*) đúng Mà a+b+c=1

=> đpcm

21 tháng 4 2018

Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)

Cái này đúng vậy ta có điều phải chứng minh

1 tháng 4 2018

a) áp dụng bđt cô si cho 2 số ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (đpcm )

b) áp dụng bđt cô si dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

26 tháng 6 2016
Áp dụng bdt Cô-si:
\(\frac{a}{b}+ab\ge2a\)
\(\frac{b}{c}+bc\ge2b\)
\(\frac{c}{a}+ac\ge2c\)
Cộng 2 vế của 3  bdt ta được:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+ab+bc+ac\ge2a+2b+2c\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge2a+2b+2c-ab-bc-ac\)
Mặt khác vì a,b,c là các số dương nên hiển nhiên ab+bc+ac>a+b+c
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>a+b+c\)
16 tháng 3 2021

xài bđt phụ mới cần phải chứng minh nhé 

mà tau nhớ làm gì có Cô si dạng Engel ??? ._.

16 tháng 3 2021

Ý mày là không tồn tại cái BĐT tên Cosi dạng engel á:")?