Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
ta có:\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)
\(\Rightarrow a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
dấu "=" xảy ra khi a=b
Lớp 8 một phát ra luôn:
lớp 7 hơi phức tạp:
\(\Leftrightarrow x^2+y^2-xy-x-y+1\ge0\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(y^2-xy\right)+\left(x^2-x\right)+\left(y^2-y\right)-\left(x-1\right)-\left(y-1\right)\ge0\)
\(\Leftrightarrow\left[x\left(x-y\right)+y\left(y-x\right)\right]+\left[x\left(x-1\right)-\left(x-1\right)\right]+\left[y\left(y-1\right)-\left(y-1\right)\right]\ge0\)\(\Leftrightarrow\left[\left(x-y\right)\left(x-y\right)\right]+\left[\left(x-1\right)\left(x-1\right)\right]+\left[\left(y-1\right)\left(y-1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\) đẳng thức khi x=y =1.
Mọi phép biến đổi là tương đương => đccm
đẳng thức khi x=y =1.
có cho số dương hay j ko