Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 8 một phát ra luôn:
lớp 7 hơi phức tạp:
\(\Leftrightarrow x^2+y^2-xy-x-y+1\ge0\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(y^2-xy\right)+\left(x^2-x\right)+\left(y^2-y\right)-\left(x-1\right)-\left(y-1\right)\ge0\)
\(\Leftrightarrow\left[x\left(x-y\right)+y\left(y-x\right)\right]+\left[x\left(x-1\right)-\left(x-1\right)\right]+\left[y\left(y-1\right)-\left(y-1\right)\right]\ge0\)\(\Leftrightarrow\left[\left(x-y\right)\left(x-y\right)\right]+\left[\left(x-1\right)\left(x-1\right)\right]+\left[\left(y-1\right)\left(y-1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\) đẳng thức khi x=y =1.
Mọi phép biến đổi là tương đương => đccm
đẳng thức khi x=y =1.
Thay x = 1 và y = -2 ta có
12 -2.1.(-2) - (-2)2 + 4.1 .(-2)
= 1 - 2.1. (-2) - 4 + 4.1.(-2)
= 1 - (-4) - 4 + (-8)
= -7
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
Ta có: (x + y)2 = (x + y) . (x + y)
= x2 + xy + yx + y2
= x2 + 2xy + y2
=> x2 + 2xy + y2 = (x + y)2
\(\left(x+y\right)^2=x\left(x+y\right)+y\left(x+y\right)=x^2+xy+y^2+xy=x^2+y^2+2xy\)
A=x^3y^2+(2xy-8xy)+(-5+6)+(-x^3y)+x^2
A=x^3y^2+(-6xy)+1+(-x^3y)+x^2
Bậc là 3
B=(2xy-5xy+12xy)+(-8+11)+x^2y^2+4x^2y
B=9xy+3+x^2y^2+4x^2y
Bậc là 2;thay x=-1,y=-1 vào A ta đc
cứ thế ban làm tiếp nha
Câu 2 :
Đặt : \(A=1+2+2^2+2^3+....+2^{99}+2^{100}\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^{100}+2^{201}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+....+2^{100}+2^{101}\right)-\left(1+2+2^2+...+2^{99}+2^{100}\right)\)\(\Leftrightarrow A=2^{101}-1\)
Vậy ta có điều phải chứng minh.
Câu 3 :
Bình phương của 1 số tự nhiên không thể có tận cùng là \(0\) hoặc \(2\)
Vậy số phải tìm chỉ có thể có tận cùng là \(1.\)
Chữ số \(0\) lại không thể ở hàng chục nghìn.
\(\Rightarrow\) Xét 3 số: \(22201,22021,20221\)
Trong đó : \(22201=149^2\) là bình phương của số tự nhiên.
Vậy số phải tìm là \(22201\).
\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)
\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)
\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)
\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)
\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)
\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)
Thay x = -1 ; y = 1/2 vào N ta được :
\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)
\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)
\(N=\frac{-20}{3}+1+\frac{5}{2}\)
\(N=\frac{-19}{6}\)
Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2