Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bình phương 2 vế:
\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ Bình phương:
\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
Bất đẳng thức cần chứng minh tương đương:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)
Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)
Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)
\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)
Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)
Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))
Đẳng thức xảy ra khi a = b = c
a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )
Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2
Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)
Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c
Suy ra VT lớn hơn hoặc bằng VP
Dấu bằng tự tìm
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Ta biến đối tương đương:
\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow4\left(a+b\right)\left(a^2-ab+b^2\right)\Leftrightarrow\left(a+b\right)\left(a+b\right)^2\)
\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)( chia hia vế cho số dương a+b)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\) là đúng.
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)
\(=\left(a+2\sqrt{ab}+b\right)^2+\left(a-2\sqrt{ab}+b\right)^2\)
\(=a^2+4ab+b^2+4a\sqrt{ab}+4b\sqrt{ab}+2ab+a^2+b^2-4a\sqrt{ab}-4b\sqrt{ab}+2ab\)
\(=2\left(a^2+b^2+6ab\right).\)(1)
Mà \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^4\le2\left(a^2+b^2+6ab\right).\)
Chứng minh tương tự ta cũng có:
\(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^2\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Suy ra :
\(A\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\right)\)
\(=6\left(a+b+c+d\right)^2\)
\(\le6.1^2=6\)
Vậy giá trị lớn nhất của \(A=6\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}.\)
BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)
dấu bằng xảy ra khi ad=bc