\(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)với 0<|a|<=n

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)

\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)

cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??

27 tháng 8 2018

Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)

=> \(2n+2\sqrt{n^2-a^2}< 4n\)

=>\(2\sqrt{n^2-a^2}< 2n\)

=>\(\sqrt{n^2-a^2}< n\)

=>n2 - a< n(bình phương cả 2 vế)

Vì |a|>0

=>a2 > 0

=> n2-a< n

Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)

câu b làm tương tự nhé:

25 tháng 7 2019

\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

=> \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)(1)

\(\frac{1}{2\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)=> \(\frac{1}{2\sqrt{n}}>\sqrt{n+1}-\sqrt{n}\)(2)

Từ (1) và (2) => \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)

20 tháng 10 2018

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

16 tháng 11 2018

mèo conavt2714691_60by60.jpg

11 tháng 7 2016

Ta có : \(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Áp dụng : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}=2\left(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\right)< 2\left(1+\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)=2\sqrt{2500}=2.50=100\)

Vậy ta có điều phải chứng minh.