Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)
=> qed
??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ???
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
1) a2 - ab + b2 ≥ 0
<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0
<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b = 0
2) a2 - ab + b2 ≥ 1/4( a + b )2
<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2
<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0
<=> 3a2 - 6ab + 3b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b
đk: \(y+3\ge0\)
BĐT cần chứng minh tương đương
\(BPT\Leftrightarrow1-2y-y^2\le\left(y+3\right)^2=y^2+6y+9\)
\(\Leftrightarrow2y^2+8y+8\ge0\)
\(\Leftrightarrow2\left(y+2\right)^2\ge0\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(y+2=0\Rightarrow y=-2\)
Chứng minh tương đương là xong nha
\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)
\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng
dấu = khi a=c
_Kudo_
Áp dụng bđt Bunhiacopski:
\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)
Dấu "=" khi a = c