K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

23 tháng 4 2018

\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

=>đpcm

21 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{na+mb}+\dfrac{b}{nb+ma}\)

\(=\dfrac{a^2}{na^2+mab}+\dfrac{b^2}{nb^2+mab}\)

\(\ge\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\). Cần chứng minh BĐT

\(\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\ge\dfrac{2}{m+n}\)

Điều này đúng vì tương đương với \(\left(a-b\right)^2\left(m-n\right)\ge0\forall a,b,m,n>0;m>n\)

25 tháng 2 2020

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

17 tháng 6 2018

1/ a) \(4x^2+4x+5>0\)

<=> \(\left(4x^2+4x+1\right)+4>0\)
<=> \(\left(2x+1\right)^2+4>0\) (bất đẳng thức đúng với mọi x)

b) \(a^2+ab+b^2\)≥ 0

<=> \(2a^2+2ab+2b^2\) ≥ 0

<=> \(\left(a^2+2ab+b^2\right)+a^2+b^2\) ≥ 0

<=> \(\left(a+b\right)^2+a^2+b^{2^{ }}\) ≥ 0 (bất đẳng thức đúng với mọi a,b)

Dấu "=" xảy ra khi a + b = a = b = 0 hay a = b = 0.

2/ A B C D E

[Mình vẽ hình tượng trưng thôi chứ không đúng đâu nhé]

Xét tam giác ABD và tam giác ACE có

Góc A chung

AB = AC (Tam giác ABC cân tại A)

Góc ABD = góc ACE (=góc B/2 = góc C/2)

Suy ra: Tam giác ABD = tam giác ACE (g.c.g)

=> AE = AD (2 cạnh tương ứng)

=> Tam giác AED cân tại A

△ABC cân tại A

=> góc B = (180o - góc A)/2 (1)

△AED cân tại A (cmt)

=> góc AED = (180o - góc A)/2 (2)

Từ (1) và (2) => góc B = góc AED

=> ED //BC

=> Tứ giác BEDC là hình thang

mà góc B = góc C (Tam giác ABC cân tại A)

=> BEDC là hình thang cân.

3/ \(1+x+x^2+x^3=y^3\)

Ta nhận thấy: 1 + x + x2 = \(\left(x+\dfrac{1}{2}\right)^{2^{ }}+\dfrac{3}{4}>0\) với mọi x

nên x3 < 1 + x + x2 + x3 hay x3 < y3 (1)

Xét hiệu (x+2)3 - y3 = (x+2)3 - (1+x+x2+x3) = 5x2 + 11x + 7

= \(5\left(x+\dfrac{11}{10}\right)^{2^{ }}+\dfrac{19}{20}>0\) nên (x+2)3 > y3 (2)

Từ (1) và (2) => x3 < y3 < (x+2)3

=> y3 = (x+1)3 (vì x,y là số nguyên)

hay 1 + x + x2 + x3 = (x+1)3

<=> x2 + x = 0 <=> x(x+1) = 0 <=> x = 0 hoặc x = -1

* Với x = -1 thì y = 1 + (-1) + (-1)2 + (-1)3 = 0

* Với x = 0 thì y = 1 + 0 + 02 + 03 = 1

Vậy Các số nguyên (x;y) cần tìm là (-1;0); (0;1).

4/ \(\left(x^2-\dfrac{25}{4}\right)^2=10x+1\)

<=> \(x^4-\dfrac{25}{2}x^2+\dfrac{625}{16}=10x+1\)

<=> \(x^4-\dfrac{25}{2}x^2-10x+\dfrac{609}{16}=0\)

<=> \(\left(x^4-\dfrac{7}{2}x^3\right)+\left(\dfrac{7}{2}x^3-\dfrac{49}{4}x^2\right)-\left(\dfrac{1}{4}x^2-\dfrac{7}{8}x\right)-\left(\dfrac{87}{8}x+\dfrac{609}{16}\right)=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left(x^3+\dfrac{7}{2}x^2-\dfrac{1}{4}x-\dfrac{87}{8}\right)=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left[\left(x^3-\dfrac{3}{2}x^2\right)+\left(5x^2-\dfrac{15}{2}x\right)+\left(\dfrac{29}{4}x-\dfrac{87}{8}\right)\right]=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left(x-\dfrac{3}{2}\right)\left(x^2+5x+\dfrac{29}{4}\right)=0\)

<=> \(x-\dfrac{7}{2}=0\) hoặc \(x-\dfrac{3}{2}=0\) (vì \(x^2+5x+\dfrac{29}{4}\)≠ 0)

<=> x = 3.5 hoặc x = 1.5.

NV
24 tháng 3 2023

Đặt \(a^3+b=c^3+d=m^3+n=k\)

\(a^3\equiv a\left(mod3\right)\Rightarrow a^3+b\equiv a+b\left(mod3\right)\)

\(\Rightarrow a+b\equiv k\left(mod3\right)\)

Tương tự: \(c+d\equiv k\left(mod3\right)\) ; \(m+n\equiv k\left(mod3\right)\)

Lại có:

\(b^3\equiv b\left(mod3\right)\Rightarrow b^3+a\equiv a+b\left(mod3\right)\)

Tương tự ...

\(\Rightarrow Q\equiv a+b+c+d+m+n\left(mod3\right)\)

\(\Rightarrow Q\equiv k+k+k\left(mod3\right)\)

\(\Rightarrow Q\equiv3k\left(mod3\right)\)

\(\Rightarrow Q⋮3\)

Mà hiển nhiên Q>3 nên Q là hợp số

24 tháng 3 2023

Anh giúp em ạ! Không biết là ra 46666200 hay là 9333240 ạ anh, em đang bị rối 1 chỗ anh giúp em xong rồi em hỏi anh ạ

https://hoc24.vn/cau-hoi/goi-s-la-tap-hop-tat-ca-cac-so-tu-nhien-gom-5-chu-so-doi-mot-khac-nhau-duoc-lap-tu-cac-chu-so-5-6-7-8-9-tinh-tong-tat-cac-so-thuoc-tap-s.7818057294758