\(\left(\frac{a+b}{2}\right)^2>=\frac{a^2+b^2}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

\(\left(\frac{a+b}{2}\right)^2\ge\frac{a^2+b^2}{2}\)

\(BDT\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge\frac{a^2+b^2}{2}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

BĐT luôn đúng nên ta có ĐPCM

23 tháng 3 2017

cho x > 0,y>0

chứng minh bất đẳng thức \(_{\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4}\)

NV
20 tháng 6 2019

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

29 tháng 1 2019

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

5 tháng 5 2019

\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)

\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)

Nhân vế của các bđt ta được :

\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

5 tháng 5 2019

đặt b + c = x ; c + a  = y ; a + b = z

\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)

\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

13 tháng 3 2019

Xét hiệu

\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2\)

\(=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)

\(=\frac{3\left(a^2+b^2+c^2\right)}{9}-\frac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\)

\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-a^2-b^2-c^2-2ab-2bc-2ac\right]\)

\(=\frac{1}{9}\left(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\)

\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) \(\ge0\)

Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)

Dấu "=" xảy ra <=> a=b=c

13 tháng 3 2019

\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\Leftrightarrow\frac{a^3+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Leftrightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Các phép biến đổi là tương đương suy ra đpcm. \("="\Leftrightarrow a=b=c\)

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge2ab+a^2+b^2=\left(a+b\right)^2\left(1\right)\)

Chia cả 2 vế của \(\left(1\right)\)cho 4 , ta được :

\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)

\(\Rightarrowđpcm\)