Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b}\)>= \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b )
\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )
\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\) = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )
Từ 3 điều này suy ra
\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>= \(\frac{3}{2}\)
dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)
a/a+b +b/b+c +c/c+a >= 3/2
<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1
<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2
<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2
<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))
Đặt: a + b = x; b + c = y; c + a = z
Thì ta có: x \(\ge\)z \(\ge\)y
Theo đề bài ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{a+b}-\frac{1}{2}+\frac{b}{b+c}-\frac{1}{2}+\frac{c}{c+a}-\frac{1}{2}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{z-y}{2x}+\frac{x-z}{2y}+\frac{y-x}{2z}\ge0\)
\(\Leftrightarrow xy^2+yz^2+zx^2-x^2y-y^2z-z^2x\ge0\)
\(\Leftrightarrow\left(y-x\right)\left(z-y\right)\left(z-x\right)\ge0\)(1)
Mà ta lại có
\(\hept{\begin{cases}y-x\le0\\z-x\le0\\z-y\ge0\end{cases}}\)nên (1) đúng
\(\Rightarrow\)ĐPCM
Đấu = xảy ra khi x = y = z hay a = b = c
Đặt b+c=m
a+c=n
a+b=p
=>a+b+c =\(\frac{m+n+p}{2}\)
a=\(\frac{n+p-m}{2}\)
b=\(\frac{m+p-n}{2}\)
c=\(\frac{m+n-p}{2}\)
=>\(\frac{n+p-m}{2m}+\frac{m+n-p}{2n}+\frac{m+n-p}{2p}\)
=\(\frac{1}{2}\left(\frac{n}{m}+\frac{m}{n}\right)\) +\(\frac{1}{2}\left(\frac{p}{m}+\frac{m}{p}\right)\) +\(\frac{1}{2}\left(\frac{p}{n}+\frac{n}{p}\right)\) -\(\frac{3}{2}\) \(\ge\) \(\frac{3}{2}\)
Áp dụng BĐT Cosi cho 2 số \(\frac{n}{m};\frac{m}{n}\) ta được:
Từ chứng minh tiếp ....
Cách 1:
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Áp dụng BĐT Cô si cho 2 số dương ta được:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)
\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\) (Đpcm)
Cách 2: Áp dụng BĐT Cô si cho 3 số dương ta được:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân vế theo vế ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\) (Đpcm)
Tự c/m BĐT phụ nhé: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu " = " xay ra <=> a\(\frac{a}{x}=\frac{b}{y}\)
Áp dụng:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1\right)^2}{a+b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
\(\Leftrightarrow1\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow a+b+c\ge9\)
Dấu " = " xảy ra <=> a=b=c=3
Anh dinh: EM có cách phần a) khá quen thuộc ạ!TỐi giờ nghĩ mãi ko ra,ai ngờ đơn giản :v
a)Áp dụng BĐT \(\frac{q^2}{x}+\frac{p^2}{y}\ge\frac{\left(q+p\right)^2}{x+y}\) hai lần,ta được:
Ta có: \(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
Áp dụng BĐT quen thuộc \(a^2+b^2+c^2\ge ab+bc+ca\)
Ta có: \(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca^{\left(đpcm\right)}\)
em học lớp 5 nên k hiểu được bài lớp 8 nhưng cứ comments,hi
a)có \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)\)\(=\frac{\left(a+b\right)^2}{ab}\Rightarrow\frac{\left(a+b\right)^2}{ab}-4=\frac{\left(a+b\right)^2-4ab}{ab}=\frac{\left(a-b\right)^2}{ab}\)\(\ge0\forall a;b>0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)dấu''=''xảy ra khi a=b
b)B=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)mà ta có \(\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\forall x;y>0\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)áp dụng bđt trên ta có B\(\ge\)2+2+2=6
dấu ''=''xảy ra khi x=y=z
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}-\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}-\dfrac{a-c}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{2}\cdot\dfrac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{2}\left(\dfrac{1}{\left(b+c\right)\left(c+a\right)}-\dfrac{1}{\left(a+b\right)\left(b+c\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
a) Áp dụng bất đẳng thức AM-GM ta có ngay :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2\left|b\right|=2b\)( do b > 0 )
=> đpcm
Đẳng thức xảy ra <=> a = b = c
b) Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)(1) ( như a) đấy :)) )
tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)(2) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)(3)
Cộng (1), (2), (3) theo vế ta có đpcm
Đẳng thức xảy ra <=> a = b = c
c) \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(=\frac{a^3}{2ab}+\frac{b^3}{2ab}+\frac{b^3}{2bc}+\frac{c^3}{2bc}+\frac{c^3}{2ca}+\frac{a^3}{2ca}\)
\(=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)(I)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\left(I\right)\ge\frac{\left(a+b+b+c+c+a\right)^2}{2b+2a+2c+2b+2a+2c}=\frac{\left[2\left(a+b+c\right)\right]^2}{4\left(a+b+c\right)}=\frac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)}=a+b+c\)
hay \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)(đpcm)
Đẳng thức xảy ra <=> a = b = c
Cho a,b,c> 0 chứng minh bất đẳng thức
(c+\(\frac{a}{bc}\))(a+\(\frac{b}{ac}\))(b+\(\frac{c}{ab}\))>=8
do a,b,c > áp dụng BĐT Cosi ta có
c+a/bc>=2<c.a/bc>=2<a/b>(bạn hiểu <> là căn bậc 2 nhan )
a+b/ac>=2<b/c>
b+c/ab>=2<c/a>
suy ra (c+a/bc)(a+b/ac)(b+c/ab)>=2<a/b>.2<b/c>.2<c/a>=8<abc/abc>=8(đpcm)
Áp dụng BĐT Cô si cho a,b>0 ta có:
\(a+b\ge2\sqrt{ab}\)(1)
\(9+ab\ge2.3\sqrt{ab}\)(2)
Từ (1) và (2) Suy ra:
\(\left(a+b\right)\left(9+ab\right)\ge12ab\)
\(\Rightarrow a+b\ge\frac{12ab}{9+ab}\)