Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
Ta có:\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)\(\forall a,b\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(đpcm\right)\)
a/ x2 + xy + y2 + 1
= [x2 + 2.x.\(\dfrac{y}{2}\) + (\(\dfrac{y}{2}\) )2 ] + \(\dfrac{3y^2}{4}\) + 1
= ( x + \(\dfrac{y}{2}\) )2 + \(\dfrac{3y^2}{4}\) + 1
Vì \(\left(x+\dfrac{y}{2}\right)^2\) \(\ge\) 0 với mọi x;y
và \(\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)
1: =(a+b)^3+c^3-3ab(a+b)-3acb
=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
\(B=\left(\frac{a+b}{c}\right)+\left(\frac{b+c}{a}\right)+\left(\frac{c+a}{b}\right)\)
\(\Leftrightarrow B=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow B=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Ta cần CM BĐT : \(\frac{a}{b}+\frac{b}{a}\ge2\)
Nhân 2 vế với ab,ta đc:
\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Leftrightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)
=>ĐPCM
CM tương tự với 2 BĐT còn lại
Cộng theo vế các BĐT,ta đc \(B\ge2+2+2=6\)
Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)
Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):
\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)
\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)
2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?
a) Kết quả ( a – b ) 2 .
Gợi ý a 4 – 2 a 2 b 2 + b 4 = ( a 2 – b 2 ) 2 = ( a – b ) 2 ( a + b ) 2 .
b) Kết quả - 8 ( a – 2 b ) 2 .