Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
Lời giải:
$a^2+b^2=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})+(a+b-\frac{1}{2})$
$=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2+(a+b-\frac{1}{2})$
$\geq a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $a^2+b^2\geq \frac{1}{2}$
Giá trị này đạt tại $a-\frac{1}{2}=b-\frac{1}{2}=0$
$\Leftrightarrow a=b=\frac{1}{2}$
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Biến đổi tương đương:
\(a^4+1\ge a^3+a\Leftrightarrow a^4-a^3-a+1\ge0\)
\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(a^2+a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+\frac{1}{4}\right)^2+\frac{3}{4}\right]\ge0\) (luôn đúng)
Vậy BĐT ban đầu đúng, dấu "=" xảy ra khi \(a=1\)
\(\Leftrightarrow a^6+1\ge a^4+a^2\)
\(\Leftrightarrow a^6-a^4-a^2+1\ge0\)
\(\Leftrightarrow a^4\left(a^2-1\right)-\left(a^2-1\right)\ge0\)
\(\Leftrightarrow\left(a^4-1\right)\left(a^2-1\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)^2\left(a^2+1\right)\ge0\)
Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a^2-1\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
\(x^2\ge2x-1\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow\left(x-1\right)^2\ge0\)
Có: \(\left(x-1\right)^2\ge0,\forall x\)
\(\rightarrow x^2-2x+1\ge0,\forall x\)
\(\Rightarrow x^2\ge2x-1,\forall x\)
Nhớ tick mik nha
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng
Vậy ta có đpcm
Không chắc là đúng đâu nhé :D
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)
\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)
\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow2a-1\ge0\)
\(\Leftrightarrow a\ge\frac{1}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Ta có: \(a^4+1\ge a\left(a^2+1\right)\)
\(\Leftrightarrow a^4+1\ge a^3+a\)
\(\Leftrightarrow a^4-a^3+1-a\ge0\)
\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)Ta thấy \(a^2+a+1=a^2+2a.\dfrac{1}{2}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)Vì \(\left(a+\dfrac{1}{2}\right)^2\ge0\) ( với mọi a )
Vậy \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\) ( với mọi a )
Khi \(x-1\ne0\) hay \(x\ne1\) ( vì \(x^2+1>0\) với mọi x )