Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BĐT \(\Leftrightarrow2a^2+2b^2-\left(a+b\right)^2\ge0\) (chuyển vế)
Hay \(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Suy ra đpcm
b) BĐT: \(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\) (chuyển vế,phá bình phương)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
c) Đợi tí,ăn sáng đã.
a)\(a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Vậy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b)\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\Rightarrowđpcm\)
a) Ta có ; \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a^2+b^2\right)+\left(a^2+b^2\right)\ge a^2+b^2+2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
b) \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\)Cộng các bất đẳng thức theo vế \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
c) Áp dụng bất đẳng thức Bunhiacopxki, ta có :
\(\left(1.a_1+1.a_2+...+1.a_n\right)^2\le\left(1_1+1_2+...+1_n\right)\left(a_1^2+a_2^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+...+a_n^2\right)\)
a/ Ta có (a + b)2 = a2 + 2ab + b2 \(\le\)a2 + b2 + a2 + b2 = 2(a2 + b2)
Câu b,c làm tương tự
Ban tham khao BDT Cosi dang tong quat nha