K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)

<=> \(a+8\ge6\sqrt{a-1}\)

<=> \(a^2+16a+64\ge36a-36\)

<=> \(a^2-20a+100\ge0\)

<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)

Dấu "="xảy ra <=> a=10

=> (1) đc CM

b, Áp dụng bđt cosi với hai số dương có

\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)

=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)

Dấu "=" xảy ra <=> a=0

4 tháng 11 2017
Đừng bumhiacopski chủ giá

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

31 tháng 7 2023

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)

22 tháng 12 2017

a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D

22 tháng 12 2017

Áp dụng BĐT Mincopxki và AM-GM có:

\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)

\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)

Khi \(a=b=c=2\)

6 tháng 8 2018

\(a+\frac{1}{a}=\frac{a^2+1}{a}\ge2\)

\(\Leftrightarrow a^2+1\ge2a\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng với mọi a)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\)

8 tháng 5 2016

Hoàn toàn chính xác

23 tháng 5 2018

\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)

Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)

Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

14 tháng 6 2017

với a > 0 và a khác 0. Ta có :

       \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}\left(1-a\right)\left(1-a\right)}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1-a\right)}{\left(1-a\right)^2}=1\)

năm nay em lên lớp 9 anh xem xét bài em nha!!! ^.^

Dùng tính chất phân phối 

Tách  vế trái ra rồi chứng minh :

Tổng vế trái bằng 1 

Với a lớn hơn hoặc bằng 0 ; a khác 1 đó là điều kiện để phân thức tồn tại thôi