\(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

\(\frac{1}{2}+\frac{1}{2}cosx=\frac{1}{2}\left(1+cosx\right)=\frac{1}{2}\left(1+2cos^2\frac{x}{2}-1\right)=cos^2\frac{x}{2}\)

Do \(0< x< \frac{\pi}{2}\Rightarrow cos\frac{x}{k}>0\) \(\forall k\) nguyên dương

\(\Rightarrow A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosx}}}\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)

\(A=cos\frac{x}{8}\)

\(\Rightarrow\) Với \(n=\pm8\) thì đẳng thức luôn đúng

NV
9 tháng 11 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(< \sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow N< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)

\(N< 2\left(1-\frac{1}{\sqrt{2012}}\right)< 2.1=2\)

1 tháng 12 2019

bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?

Áp dụng BĐT Cô - si, ta có :

\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:

\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)

\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)

Cộng 3 vế BĐT => đpcm

NV
6 tháng 6 2020

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosa}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{2}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{4}-1\right)}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{4}}=\sqrt{\frac{1}{2}+\frac{1}{2}\left(cos^2\frac{a}{8}-1\right)}\)

\(=cos\frac{a}{8}\Rightarrow n=8\)

NV
24 tháng 9 2019

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)

\(A=2\left(\frac{1}{\sqrt{1}+\sqrt{1}}+\frac{1}{\sqrt{2}+\sqrt{2}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}\right)\)

\(A>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)

\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(A>2\left(\sqrt{n+1}-1\right)\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Leftrightarrow\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{1}{2\sqrt{2}}\left(\sqrt{2}.\sqrt{a^2+b^2}+\sqrt{2}.\sqrt{b^2+c^2}+\sqrt{2}.\sqrt{c^2+a^2}\right)\)

\(VT\ge\sqrt{2}.\frac{9}{2\left(a+b+c\right)}\ge\sqrt{2}.\frac{9}{2\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{3\sqrt{2}}{2}\left(1\right)\)

\(VP\le\frac{1}{2\sqrt{2}}.\frac{2\left(a^2+b^2+c^2\right)+6}{2}=\frac{3\sqrt{2}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge VP\)

Dấu \("="\) xảy ra khi \(a=b=c=1\)

1 tháng 1 2020

Akai Haruma dạ giúp em bài này vs ạ ...!!!

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)