Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi mình có cách làm bài này dễ hơn quy nạp, bạn có thể tham khảo mình :
trước tiên mình cho bạn công thức an-bn chia hết a-b (n tự nhiên,a,b nguyên)và đề trên bạn thiếu n>0 nha , n=0 thì điều cm ko đúng
11n+1+122n-1
=11n+2-1+11n-1.12-11n-1.12+122n-2+1
=121.11n-1+11n-1.12+144n-1.12-11n-1.12
=11n-1(121+12)+12(144n-1-11n-1)
=11n-1.133+12(144n-1-11n-1)
vì 133 chia hết cho 133 suy ra 11n-1.133 chia hết cho 133 (1)
vì n>0 suy ra n-1>=0 suy ra n-1 tự nhiên
vì 144n-1-11n-1 chia hết cho 144-11=133 và n-1 tự nhiên suy ra 144n-1-11n-1 chia hết cho 133 suy ra 12(144n-1-11n-1) chia hết cho 133 (2)
từ (1),(2) suy ra 11n-1.133+12(144n-1-11n-1)chia hết cho 133 suy ra 11n+1+122n-1 chia hết cho 133
vì néu n lẻ thì n+1 chẵn mà lẻ nhân chẵn bằng chẵn chia hết cho 2 mà nếu n chẵn thì n+1 lẻ mà chẵn nhân lẻ bằng lẻ nên n(n+1) chia hết cho 2
ĐÂY KHÔNG PHẢI TOÁN LỚP 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....
Dễ thôi
Ta có:
\(1+4\cdot1=5\)
Tiếp tục ta có:
\(2+5\cdot2=12\)
\(3+3\cdot6=21\)
Vậy số cần tìm là : \(8+11\cdot8=96\)
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)
\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)
1 + 1 = 2
Còn chứng minh vì sao à ? Là vì người ta quy định thế từ xa xưa rồi, cậu bắt tớ thay đổi thế nào được ? Tớ muốn 1 + 1 = 3 lắm chứ T-T
Bài 4 nha
Áp dụng BĐT cô si ta có
\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)
Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1
30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)
ĐK: \(x\ne\frac{k\pi}{2}\)
pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)
<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)
Đánh giá: \(-1\le\sin2x\le1\)
=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)
\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)
Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)
<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại
TH2:
\(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)
<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
Vậy ...
29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)
<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)
<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)
<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)
Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)
( theo bunhia)
=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)
(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=> \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)
<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)
(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)
<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)
Vậy pt vô nghiệm
Toán lớp 1 hả má ơi
đay là toán lớp 1 hả :)))