Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)
\(=5^n.51+8.64^n\)
Có \(64\equiv5\) (mod 59)
\(\Rightarrow64^n\equiv5^n\) (mod 59)
\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)
mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)
b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)
Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)
Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)
\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)
\(\Rightarrow16^n-9^n-7⋮3\) (II)
Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8)
\(\Rightarrow9^n+7⋮8\) mà \(16^n=2^n.8^n⋮8\)
\(\Rightarrow16^n-9^n-7⋮8\) (III)
Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)
Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\)
\(\Rightarrow\) Đpcm
a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n
=5n.51+8.64n=5n.51+8.64n
Có 64≡564≡5 (mod 59)
⇒64n≡5n⇒64n≡5n (mod 59)
⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)
mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59)