Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt y = x2 + 4,5x - 8, ta có:
\(M=4\left(y-2,5x\right)\left(y+2,5x\right)+25x^2\)
\(=4y^2-25x^2+25x^2=4y^2\ge0\forall x\in R\)
Tóm lại, M không có giá trị âm (đpcm)
M=4(x - 2)(x - 1)(x + 4)(x + 8) + 25x2
M=4 ( x - 2 )( x + 4 ).( x - 1 )( x + 8 )+ ( 5x )2
M=4 ( x2 + 2x - 8 )( x2 + 7x - 8 ) + ( 5x )2 (1)
Đặt t = x2 + 7 x - 8, khi đó (1) trở thành:
M=4( t - 5x ).t + ( 5x )2
M=4t2 - 20tx + ( 5x )2
M=( 2t - 5x )2
Thay t = x2 + 7x - 8 ta được: M= (2x2 + 9x - 16)2 >= 0
Vậy M luôn không có giá trị âm.
\(M=4\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+8\right)+25x^2=4\left[\left(x-1\right)\left(x+8\right)\right]\left[\left(x-2\right)\left(x+4\right)\right]+25x3\)
\(M=4\left(x^2+7x-8\right)\left(x^2+2x-8\right)+\left(5x\right)^2\)
Đặt \(a=x^2+7x-8\Rightarrow x^2+2x-8=a-5x\)
\(\Rightarrow M=4a\left(a-5\right)+\left(5x\right)^2=\left(4a\right)^2-20a+\left(5x\right)^2=\left(4a-5x\right)^2\)
Thế \(a=x^2+7x-8\) vào , ta được :
\(M=\left(2a^2+9x-16\right)^2\)
Bạn Võ Thạch Đức Tín giải đúng nhưng sai một vài chỗ rồi, mình sửa lại nha.
Dòng thứ hai từ trên xuống : 25x3 sửa thành 25x2
Dòng thứ năm từ trên xuống : 4a ( a - 5 ) thành 4a.( a - 5x ), ( 4a )2 thành ( 2a ) 2 và - 20x thành -20ax
=> M = 4a.( a - 5 ) + ( 5x ) 2 = ( 2a ) 2 - 20x + ( 5x )2 = ( 2a - 5x )2
Vì chỗ này sai nên kết quả phải sửa lại thành :
M = ( 2x2 + 14x - 16 - 5x )2
= ( 2x2 + 9x - 16 )2
Tìm ra được đến đây rồi nhưng bạn chưa chứng minh được M không âm
Bổ sung
Vì ( 2x2 + 9x - 16 )2 > 0 với mọi x
=> M > 0
Vậy M luôn không âm
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)
\(=\frac{15}{24}x^8y^6\ge0\) với \(\forall x,y\)
TL:
=\(\frac{-3}{4}x^6y^2.\frac{-5}{6}x^2y^4\)
=\(\frac{5}{8}x^8y^6\)
mà\(\frac{5}{8}x^8y^6\ge0\forall x\in R\)
vậy.....
hc tốt
Bài 2:
a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0
hay x>-2
b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0
hay x<-2/3