Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(n+3,n+4\right)\)
Suy ra \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
b) Đặt \(d=\left(2n+5,4n+11\right)\)
Suy ra \(\hept{\begin{cases}2n+5⋮d\\4n+11⋮d\end{cases}}\Rightarrow\left(4n+11\right)-2\left(n+5\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
c) Đặt \(d=\left(3n+4,4n+5\right)\)
Suy ra \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Rightarrow4\left(3n+4\right)-3\left(4n+5\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.
Gọi d=ƯCLN(4n+3;8n+2)
=>\(\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8n+6⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(8n+6-8n-2⋮d\)
=>\(4⋮d\)
mà 4n+3 lẻ
nên d=1
=>ƯCLN(4n+3;8n+2)=1
=>\(\dfrac{4n+3}{8n+2}\) là phân số tối giản
Gọi \(d=ƯC\left(4n+3;8n+2\right)\) với \(d\in N\)*
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
\(\Rightarrow2\left(4n+3\right)-\left(8n+2\right)⋮d\)
\(\Rightarrow4⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)
Mặt khác do \(4n+3\) luôn lẻ, mà các số tự nhiên lẻ chỉ có các ước lẻ \(\Rightarrow d\) là số lẻ
\(\Rightarrow d=1\)
\(\Rightarrow4n+3\) và \(8n+2\) nguyên tố cùng nhau
\(\Rightarrow\dfrac{4n+3}{8n+2}\) là phân số tối giản
Gọi d=ƯCLN(5n+4;4n+3)
=>20n+16-20n-15 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi \(\text{Ư}c\left(5n+4;4n+3\right)=d\)
\(=>\left\{{}\begin{matrix}5n+4⋮d\\4n+3⋮d\end{matrix}\right.=>\left\{{}\begin{matrix}20n+16⋮d\\20n+15⋮d\end{matrix}\right.\)
\(=>\left(20n+16\right)-\left(20n+15\right)⋮d\)
\(=>1⋮d\)
\(=>d\in\left\{-1;1\right\}\)
\(=>M\) là phân số tối giản
Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)
=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
=> (4n+7)-(4n+6) chia hết cho d
=> 4n+7-4n-6 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N
=> d=1 => ƯCLN (2n+3; 4n+7)=1
=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z
Gọi d là ƯC(2n + 3 ; 4n + 7)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)
=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d
=> 2 chia hết cho d
* d = 1 => 2n + 3 chia hết cho 1
* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2
=> d = 1
=> ƯCLN(2n + 3; 4n + 7) = 1
=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )
Gọi d=ƯCLN(2n+3;4n+4)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\4n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+6⋮d\\4n+4⋮d\end{matrix}\right.\)
=>\(4n+6-4n-4⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+4)=1
=>\(B=\dfrac{2n+3}{4n+4}\) là phân số tối giản