Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(4A=4+4^2+4^3+..+4^{99}+4^{100}=\left(1+4+4^2+..+4^{99}\right)+4^{100}-1\)
hay
\(4A=A+4^{100}-1\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
vậy ta có điều phải chứng minh
ta có :
\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow4A=-1-\frac{1}{3^{101}}\)
\(\Rightarrow4A=\frac{-3^{101}-1}{3^{101}}\)
\(\Rightarrow A=\left(\frac{-3^{101}-1}{3^{101}}\right):4\)
\(A=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
\(\Rightarrow3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow3A+A=4A\)
\(=\left(-1+\frac{1}{3}-...-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
\(=-1+\frac{1}{3}-...-\frac{1}{3^{100}}-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
\(=-1-\frac{1}{3^{101}}\)
\(\Rightarrow A=\frac{-1-\frac{1}{3^{101}}}{4}\)
Vậy \(A=\frac{-1-\frac{1}{3^{101}}}{4}\)
a ) 15 . 19 . 37 - 225
Tích của các số có tận cùng là 5 với các số lẻ luôn có tận cùng là 5 .
...5 - 225 = ...0
Số có tận cùng là 0 thì chia hết cho 10 . Vậy hiệu đó là hợp số vì nó có nhiều hơn 2 ước .
b ) 5 .3 . 6 + 7.11.12
Tích của mỗi số hạng đều có số chẵn nên tổng sẽ chẳn .
Chẵn + chẵn = chẵn . Mà số chẵn thì chia hết cho 2 .
Vậy tổng đó là hợp số vì nó có nhiều hơn 2 ước .
\(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+\frac{4}{96}+...+\frac{98}{2}+\frac{99}{1}\)
\(A=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+\left(\frac{4}{96}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(A=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+\frac{100}{96}+...+\frac{100}{2}\)
\(A=100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=100\)
`3/(-10) ; 1/(-2) ; 4/(-5)=> -3/10 ; -1/2 ; -4/5`
ta có : `-1/2=(-1xx5)/(2xx5)=-5/10 ; -4/5=(-4xx2)/(5xx2)=-8/10`
vậy `3/(-10) < 1/(-2) < 4/(-5)`
`--------------------`
`2/(-10) ; 7/(-5) ; -1/2=>-2/10 ;-7/5;-1/2`
ta có : `-7/5=(-7xx2)/(5xx2)=-14/10; -1/2=(-1xx5)/(2xx5)=-5/10`
vậy `2/(-10) < -1/2 < 7/(-5)`
`---------------------`
`7/(-4) ; -2/5 ; -3/10=> -7/4;-2/5;-3/10`
ta có : `-7/4=(-7xx5)/(4xx5)=-35/20 ; -2/5=(-2xx4)/(5xx4)=-8/20;-3/10=(-3xx2)/(10xx2)=-6/20`
vậy 7/(-4) > -2/5 > -3/10`
a, A = 92n - 1
A = (92)n - 1
Ta có : 92 có chữ số tận cùng là 1
=> (92)n có chữ số tận cùng là 1 ( vì số có chữ số tận cùng là 1 thì nâng lên lũy thừa bao nhiêu vẫn có chữ số tận cùng là 1)
Mà 1 có chữ số tận cùng là 1
=> 92n - 1 có chữ số tận cùng là 0
=> 92n - 1 chia hết cho 2 và 5 ( vì 0 \(⋮\)2 và 0 \(⋮\) 5)
Vậy A chia hết cho 2 và 5
CHÂN THÀNH XIN LỖI BẠN VÌ MÌNH CHỈ LÀM ĐƯỢC Ý a, THÔI
Nhớ tích nha
\(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{7}{10}\)
\(10x=21\)
\(x=2,1\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\\ 3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}< 1\left(DPCM\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}\\ \Rightarrow B=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
Vì \(1-\dfrac{1}{3^{100}}< 1\) nên:
\(\dfrac{1-\dfrac{1}{3^{100}}}{2}< \dfrac{1}{2}< 1\) hay \(B< 1\)
Vậy...