Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6
Lời giải:
Ta có:
$N=2n^4-7n^3-2n^2+13n+6$
$=2n^3(n+1)-9n^2(n+1)+7n(n+1)+6(n+1)$
$=(n+1)(2n^3-9n^2+7n+6)$
$=(n+1)[2n^2(n-2)-5n(n-2)-3(n-2)]$
$=(n+1)(n-2)(2n^2-5n-3)$
$=(n+1)(n-2)[2n(n-3)+(n-3)]=(n+1)(n-2)(n-3)(2n+1)$
Vì $n-2,n-3$ là 2 số nguyên liên tiếp nên $(n-2)(n-3)\vdots 2(*)$
Mặt khác:
Nếu $n=3k$ thì $n-3\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+1$ thì $2n+1=2(3k+1)+1=3(2k+1)\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+2$ thì $n-2\vdots 3\Rightarrow N\vdots 3$
Vậy $N\vdots 3(**)$
Từ $(*); (**)$ mà $(2,3)=1$ nên $N\vdots 6$ (đpcm)
Bài nà viết sai đề
\(N=2n^4-7n^3-2n^3+13n+6=(n-2)(n-3)(n+1)(2n+1)\)
(*) Ta có n\(\in Z\)=> n-2,n-3 là 2 số nguyên liên tiếp=> có 1 số \(\vdots 2\)
=> (n-2)(n-3)(n+1)(2n+1)\(\vdots 2\) (1)
(*) Vì n là số nguyên nên có 3 dạng 3k,3k+1,3k+2
Với n=3k=>n-3 \(\vdots 3\)=>\(N\vdots 3\)
Với n=3k+1=>\(2n+1 \vdots 3\)=> N\(\vdots 3\)
Với n=3k+2=> n+1 \(\vdots 3\)=> N \(\vdots 3\)
=> N\(\vdots 3 mọi n\)(2)
Từ (1),(2) kết hợp (2,3)=1=> N\(\vdots 6\)
Vậy N chia hết cho 6
b: \(A=\left(n+2\right)\left(n+5\right)+2010\)
TH1: n+2 chia hết cho 3;n+5 chia hết cho 3
=>(n+2)(n+5) chia hết cho 9
=>A ko chia hết cho 9
TH2: n+2 không chia hết cho3;n+5 khôg chia hếtcho3
=>(n+2)(n+5) ko chia hết cho 3
=>A không chia hết cho 9
a: \(B=\left(22+16\right)\cdot C+2011=38\cdot C+2011⋮̸19\)
Ta có:
2n3 + 3n2 + 7n
= 2n3 + 2n2 + n2 + n + 6n
= 2n2.(n + 1) + n.(n + 1) + 6n
= (n + 1).(2n2 + n) + 6n
= (n + 1).n.(2n + 1) + 6n
Vì 6n chia hết cho 6 nên ta phải chứng minh (n + 1).n.(2n + 1) chia hết cho 6
- Vì (n + 1).n là tích 2 số tự nhiên liên tiếp nên (n + 1).n chia hết cho 2 => (n + 1).n.(2n + 1) chia hết cho 2 (1)
- + Với n = 3k thì n chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3
+ Với n = 3k + 1 thì 2n + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3
Như vậy, (n + 1).n.(2n + 1) chia hết cho 3 (2)
Từ (1) và (2), mà (2;3)=1 => (n + 1).n.(2n + 1) chia hết cho 6
=> (n + 1).n.(2n + 1) + 6n chia hết cho 6
=> 2n3 + 3n2 + 7n chia hết cho 6 (đpcm)