Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)+Q\left(x\right)=x^3-2x+1+2x^2-2x^3+x-5=-x^3+2x^2-x-4\)
\(P\left(x\right)-Q\left(x\right)=x^3-2x+1-2x^2+2x^3-x+5=3x^3-2x^2-3x+6\)
Tick mình nha bạn. Chúc bạn một năm mới vui vẻ ,hạnh phúc, may mắn, học giỏi...
\(\left(x-\frac{2}{5}\right)\left(x+\frac{2}{7}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{2}{7}>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x>-\frac{2}{7}\end{cases}\Leftrightarrow}x>\frac{2}{5}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{5}< 0\\x+\frac{2}{7}< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< \frac{2}{5}\\x< -\frac{2}{7}\end{cases}\Leftrightarrow}x< -\frac{2}{7}}\)
b) \(\left(2x-\frac{1}{2}\right)\left(3x-\frac{1}{3}\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}}\)
a) ( x - 2/5 )( x + 2/7 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-\frac{2}{5}>0\\x+\frac{2}{7}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{2}{5}\\x>-\frac{2}{7}\end{cases}\Leftrightarrow}x>\frac{2}{5}\)
2. \(\hept{\begin{cases}x-\frac{2}{5}< 0\\x+\frac{2}{7}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{2}{5}\\x< -\frac{2}{7}\end{cases}}\Leftrightarrow x< -\frac{2}{7}\)
Vậy với x > 2/5 hoặc x < -2/7 thì ( x - 2/5 )( x + 2/7 ) > 0
b) ( 2x - 1/2 )( 3x - 1/3 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x>\frac{1}{2}\\3x< \frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x< \frac{1}{2}\\3x>\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}}\Leftrightarrow\frac{1}{9}< x< \frac{1}{4}\)
Vậy với 1/9 < x < 1/4 thì ( 2x - 1/2 )( 3x - 1/3 ) < 0
a,f(1/2)=5-2*(1/2)=5-1=4
f(3)=5-2x3=5-6=-1
b,Với y=5 thì 5-2x=5
2x=5-5
2x=0
x=0:2=0
Vậy x=0
Với y=-1 thì 5-2x=-1
2x=5-(-1)
2x=5+1
2x=6
x=6:2=3
Vậy x=3
a) Thay f(1/2) vào hàm số ta có :
y=f(1/2)=5-2.(1/2)=4
Thay f(3) vào hàm số ta có :
y=f(3)=5-2.3=-1
b) y=5-2x <=> 5-2x=5
2x=5-5
2x=0
=> x=0
<=> 5-2x=-1
2x=5-(-1)
2x=6
=> x=3
a, f (1/2) = 5 - 2.1/2 = 4
f (3) = 5 - 2.3 = -1
b, y = 5 <=> 5 - 2x = 5
<=> x = 0
y = -1 <=> 5 - 2x = -1
<=> x = 3
_Hok tốt_
( sai thì thôi nha )
a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)
a/ x2+5x=0
=> x2=5x=0
=> x=0
b/ 3(2x+3)(3x-5)<0
=> 2x+3 và 3x-5 phải khác dấu
x=0
câu này mk chỉ bít kết quả thui thông cảm nha
a) \(x\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(x\left(2x+7\right)>0\)
\(TH1:\left\{{}\begin{matrix}x>0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x>0\)
\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x< -\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x< -\dfrac{7}{2}\)
Vậy \(x>0\) hay \(x< -\dfrac{7}{2}\)
c) \(x\left(2x+7\right)< 0\)
\(TH1:\left\{{}\begin{matrix}x>0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< -\dfrac{7}{2}\end{matrix}\right.\) (Vô lý nên loại)
\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{7}{2}< x< 0\)
Vậy \(-\dfrac{7}{2}< x< 0\)