\(⋮\) 37

b)abcdeg \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

abcdeg=10000*abc+deg=2001*deg=>chia hết cho 23 và 29

13 tháng 10 2018

a) Giả sử abcdeg chia hết cho 37                     —> 999abc+(abc+deg) chia hết cho 37

—> 999abc chia hết cho 37  vì 999 :37 ko dư                                                     —>abc + deg  chia hết cho 37

19 tháng 11 2016

a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)

\(=1001abc-\left(abc-deg\right)\)

\(=abc\cdot13\cdot77-\left(abc-deg\right)\)

Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13

=> abcdeg chia hết cho 13 ( đpcm )

19 tháng 11 2016

b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29

\(=>2000a+200b+20c+2d\) chia hết cho 29

\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>a+3b+9c+27d\) chia hết cho 29

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

abcdeg = abc .1000 + deg

               = deg .1000 + deg

               = deg . 1001

                = deg . 23 .29 .3

=> abcdeg chia hết cho 23,29 

1 tháng 11 2018

a/ 

\(\overline{abcd}=100.\overline{ab}+\overline{cd}=4.25.\overline{ab}+\overline{cd}\)

Ta có \(4.25.\overline{ab}\) chia hết cho 25 và \(\overline{cd}\) chia hết cho 25 \(\Rightarrow\overline{abcd}\) chia hết cho 25

b/

\(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1001.\overline{abc}+\overline{deg}-\overline{abc}=11.91.\overline{abc}+\overline{deg}-\overline{abc}\)

Ta có \(11.91.\overline{abc}\) chia hết cho 11 và \(\overline{deg}-\overline{abc}\) chia hết cho 11 \(\Rightarrow\overline{abcdeg}\) chia hết cho 11

1 tháng 11 2015

b)ta có:

abcdeg=abx10000+bcx100+eg

           =abx9999+bcx99+ab+bc+eg

vì abx9999 chia hết cho 11 và bcx99 chia hết cho 11 và ab+bc+eg chia hết cho 11(đầu bài đã cho)

=> abcdeg chia hết cho 11(điều phải chứng minh)