Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?
Áp dụng BĐT Cô - si, ta có :
\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)
\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:
\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)
\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)
Cộng 3 vế BĐT => đpcm
Em nghĩ cần thêm đk a, b, c là các số thực dương
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0
BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)
\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)
\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)
\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)
Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)
Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)
\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)
Ta có đpcm.
Đẳng thức xảy ra khi a = b = c = 1
Is that true?
\(3=a+b+ab\le a+b+\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)
\(\Leftrightarrow\left(a+b-2\right)\left(a+b+6\right)\ge0\Rightarrow a+b\ge2\)
Đặt vế trái của BĐT là P
\(P=\frac{4a\left(a+1\right)+4b\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}+2ab-\sqrt{7-3\left(3-a-b\right)}\)
\(P=\frac{4\left(a^2+b^2+a+b\right)}{ab+a+b+1}+2ab-\sqrt{3\left(a+b\right)-2}\)
\(P=a^2+b^2+a+b+2ab-\sqrt{3\left(a+b\right)-2}\)
\(P=\left(a+b\right)^2+a+b-\sqrt{3\left(a+b\right)-2}\)
Đặt \(\sqrt{3\left(a+b\right)-2}=x\Rightarrow\left\{{}\begin{matrix}x\ge2\\a+b=\frac{x^2+2}{3}\end{matrix}\right.\)
\(\Rightarrow P=\left(\frac{x^2+2}{3}\right)^2+\frac{x^2+2}{3}-x=\frac{x^4+7x^2-9x+10}{9}\)
\(P=\frac{x^4+7x^2-9x-26+36}{9}=\frac{\left(x-2\right)\left(x^3+2x^2+11x+13\right)}{9}+4\ge4\) ; \(\forall x\ge2\) (đpcm)
Dấu "=" xảy ra khi \(x=2\) hay \(a=b=1\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Leftrightarrow\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{1}{2\sqrt{2}}\left(\sqrt{2}.\sqrt{a^2+b^2}+\sqrt{2}.\sqrt{b^2+c^2}+\sqrt{2}.\sqrt{c^2+a^2}\right)\)
\(VT\ge\sqrt{2}.\frac{9}{2\left(a+b+c\right)}\ge\sqrt{2}.\frac{9}{2\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{3\sqrt{2}}{2}\left(1\right)\)
\(VP\le\frac{1}{2\sqrt{2}}.\frac{2\left(a^2+b^2+c^2\right)+6}{2}=\frac{3\sqrt{2}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge VP\)
Dấu \("="\) xảy ra khi \(a=b=c=1\)
\(a^{\frac{m}{n}}=\sqrt[n]{\left(a^{\frac{m}{n}}\right)^n}=\sqrt[n]{a^m}\)