Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
Đặt :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{100^2}\)
Ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Leftrightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\left(\frac{1}{2^2}\right)\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt \(C=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow C< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow C< 2-\frac{1}{50}=\frac{99}{50}\)
\(\Rightarrow A=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Ta có:
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Mà \(\frac{49}{100}< \frac{1}{2}\)
Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ta có:\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)(1)
Xét\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)(2)
Mà\(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)(3)
Từ (1), (2), (3)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
Vậy...
Linz
Cho \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Chứng minh rằng 1/6 < A < 1/4
a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
. . .
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)
b) Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)
Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
. . .
\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)
\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)
hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\right)\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 2\)
\(\Rightarrow A< \frac{1}{2^2}.2=\frac{1}{2}\) (đpcm)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{100^2-1}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2A< \frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A< \frac{1}{1}-\frac{1}{101}< 1\Rightarrow2A< 1\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)