Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>ab.99+(ab+cd) chia hết cho 99
Vi ab.99 chia hết cho 99
Nen ab+cd chia hết cho 99 (ĐPCM)
Trước hết ta dùng ký hiệu ¯ (dấu gạch đầu) để chỉ một số có nhiều chữ số
Theo đề bài ¯abcdef chia hết cho 7 ⇒ 10.(¯abcde) + f chia hết cho 7 (♥)
Ta cần cm ¯fabcde chia hết cho 7
Ta có 10.(¯fabcde) = 10.(10⁵.f + (¯abcde)) = 10⁶.f + 10.(¯abcde) = (10⁶ - 1)f + [10.(¯abcde) + f]
Mà:
10⁶ - 1 chia hết hết cho 7. Có nhiều cách để kiểm tra điều này:
1) 10⁶ - 1 = 999999 bấm máy thấy nó chia hết cho 7 :D
2) Sử dụng dấu hiệu chia hết cho 7
3) Dùng tính chất của đồng dư thức: 10⁶ ≡ 3⁶ = (9)³ ≡ 2³ ≡ 1 (mod 7) ⇒ 10⁶ - 1 chia hết cho 7
10.(¯abcde) + f chia hết cho 7 do (♥)
⇒ 10.(¯fabcde) chia hết cho 7
⇒ (¯fabcde) chia hết cho 7 (vì 10 và 7 nguyên tố cùng nhau)
Đó là đpcm
abcdef = 1000.abc + def = 1001.abc - abc + def = 7.143. abc - (abc - def) chia hết cho 7
\(a.\)\(135\); \(175\); \(315\); \(375\); \(715\); \(735.\)
b. 135 ; 153 ; 315 ; 351 ; 357 ; 375 ; 573 ; 537 ; 513 ; 531 ; 753 ; 735 .
1879ab ÷45(a=2;b=0)
Vậy 187920÷45
=4176
87a9b ÷22(a=4;b=4)
Vậy 87494÷22
=3977
\(a)1879ab⋮45\)
\(\Rightarrow1879ab⋮5;1879ab⋮9\)
\(\Rightarrow b=0;5\)
\(b=0\Rightarrow1+8+7+9+a⋮9\)
\(\Rightarrow b=0;a=2\)
\(b=5\Rightarrow1+8+7+9+a+5⋮9\)
\(\Rightarrow b=0;a=6\)
\(\overline{abcdef}=100x\overline{abcd}+ef=98x\overline{abcd}+2x\overline{abcd}+\overline{ef}⋮7\)
\(98x\overline{abcd}⋮7\Rightarrow2x\overline{abcd}+\overline{ef}⋮7\)
\(\overline{efabcd}=10000x\overline{ef}+\overline{abcd}=9996x\overline{ef}+4x\overline{ef}+\overline{abcd}\)
Ta có
\(2x\left(4x\overline{ef}+\overline{abcd}\right)=8x\overline{ef}+2x\overline{abcd}=7x\overline{ef}+\left(2x\overline{abcd}+\overline{ef}\right)\)
Ta thấy
\(7x\overline{ef}⋮7\)
\(2x\overline{abcd}+\overline{ef}⋮7\left(cmt\right)\)
\(\Rightarrow2x\left(4x\overline{ef}+\overline{abcd}\right)⋮7\Rightarrow4x\overline{ef}+\overline{abcd}⋮7\)
Ta thấy
\(9996x\overline{ef}⋮7;4x\overline{ef}+\overline{abcd}⋮7\Rightarrow\overline{efabcd}⋮7\)