K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(\frac{a}{a+c}=\frac{b}{b+d}\Rightarrow a\left(b+d\right)=b\left(a+c\right)\)

\(\Rightarrow ab+ad=ab+bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

11 tháng 10 2017

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này : 
Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) 

Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

31 tháng 3 2021

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

=>\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=>\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

18 tháng 10 2014

Theo tính chất của dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Do đó

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

30 tháng 10 2018

ta có :a/b=c/d=k

=>\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

ta có \(\dfrac{a^2+a.c}{c^2-a.c}=\dfrac{b^2.k^2+b.k.d.k}{d^2.k^2-b.k.d.k}=\dfrac{k^2.\left(b^2+bd\right)}{k^2.\left(d^2-bd\right)}=\dfrac{b^2+bd}{d^2-bd}\)

=> ĐPCM

30 tháng 7 2017

Ta có:

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow\left\{{}\begin{matrix}ad+ab< bc+ab\\ad+cd< bc+cd\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{a+c}{b+d}< \dfrac{c}{d}\end{matrix}\right.\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{a}{d}\)(đpcm)

Chúc bạn học tốt!!!

a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của day tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)

 

19 tháng 8 2021

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)

1: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a+c}=\dfrac{bk}{bk+dk}=\dfrac{b}{b+d}\)

2: Ta có: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

nên \(\dfrac{a+c}{a}=\dfrac{b+d}{b}\)

3: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)

Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=>a/c=a+b/c+d