Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcdef=1000abc+def=2000def+def=2001def=23.87def=29.69def chia hết cho 23;29
=>đpcm
abc+def = a*100000+b*10000+c*1000+d*100+e*10+f*1 = (a*b*c+d*e*f)*(100000+10000+1000+100+10+1) =(a*b*c+d*e*f)*111111 vì 111111 chia hết cho 37 nên (a*b*c+d*e*f) chia hết cho 37 => DPCM
1/ Từ ab+2cd => abcd = 100ab + cd = 200cd +cd
hay abcd = 201cd mà 201 chia hết cho 67
Vậy abcd chia hết cho 67 (đpcm)
2/
a) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc . 7 . 3 . 11
Vậy abcabc là tích của abc với 7 ;3;11 => abcabc chia hết cho 7, 11 và 13
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
abc + def chia hết cho 37 ( theo đề bài ) => 1000 ( abc + def ) cũng chia hết 37
ta có : 1000 abc + 1000def <=> 1000abc + def + 999def
hay : abcdef + 999def ( chia hết cho 37 )
mà 999def chia hết cho 37 => abcdef cũng chia hết cho 37 => dpcm
\(\overline{abc}\) = 2.\(\overline{def}\)
Thay \(\overline{abc}\) = 2.\(\overline{def}\) vào \(\overline{abcd}\) = 10. \(\overline{abc}\) + d ta có:
\(\overline{abcd}\) = 10.2.\(\overline{def}\) + d
\(\overline{abcd}\) = 20. \(\overline{def}\) + d
\(\overline{abcd}\) = 20.(d x 100 + \(\overline{ef}\)) + d
\(\overline{abcd}\) = 2000.d + 20.\(\overline{ef}\) + d
\(\overline{abcd}\) = d.(2000 + 1) + 20.\(\overline{ef}\)
\(\overline{abcd}\) = 2001.d + 20.\(\overline{ef}\)
\(\overline{abcd}\) = 23.87.d + 20.\(\overline{ef}\)
\(\overline{abcd}\) ⋮ 23 ⇔ \(\overline{ef}\) chia hết cho 23