K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2023

Gọi ước chung của ab và a+b là d \(\left(d\ne0\right)\) 

=> \(ab⋮d\) (1) ;  \(a+b⋮d\) (2)

Từ (1), ta thấy nếu \(ab⋮d\) thì a hoặc b sẽ chia hết cho d

Từ (2) ta giả sử a chia hết cho d thì b cũng sẽ chia hết cho d

=> d là ước nguyên tố của a và b 

=> a và b là 2 số nguyên tố cùng nhau hay (a,b)=1

=> đpcm

3 tháng 11 2019

a)Gọi 2 số lẻ liên tiếp là:a;a+1 và (a,a+1) là d.

\(\Rightarrow\)\(\hept{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)

\(\Rightarrow\)a+1-a\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi (4n+5,6n+7) là d.

\(\Rightarrow\)\(\hept{\begin{cases}4n+5⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\)6(4n+5)-4(6n+7)\(⋮\)d

\(\Rightarrow\)24n+30-24n+28\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow\)d\(\in\){1;2}

Mà 4n+5 là số lẻ

\(\Rightarrow\)d=1

\(\Rightarrow\)4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.

Vậy 4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.

3 tháng 11 2019

Gọi 2 số lẻ liên tiếp là a;a+2 (mà a € N ) 

Giả sử:(a;a+2)=d

=>a chia hết cho d

a+2 chia hết cho d

(a+2)-a chia hết cho d

=>2 chia hết cho d

Vậy d=1 hoặc d=2

Mà a và a+2 là 2 số lẻ=> d  khác 2=> d=1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tô cùng nhau

1 tháng 1 2016

tick đi tôi giải cho

1 tháng 1 2016

​Bài 1:

Gọi UCLN của n+1 và 3n+4 là d.

​Suy ra:n+1 chia hết cho d

​3n+4 chia hết cho d

​Suy ra:3n+3 chia hết cho d

​3n+4 chia hết cho d

Suy ra:(3n+4)-(3n+3) chia het cho d

​Suy ra:       1        chia hết cho d

​Vậy d=1.

VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>

20 tháng 12 2022

Hi

 

4 tháng 1 2018

a)            Gọi ƯCLN (b;a-b) là d

                thì :   b chia hết cho d

                       a-b chia hết cho d

             suy ra : a chia hết cho d   

             suy ra : d thuộc ước chung của a và b

             Mà ƯCLN (a,b)=1

              ƯC (a,b) = Ư(1)=1

              Suy ra d=1

       Vậy b và a-b nguyên tố cùng nhau

4 tháng 1 2018

b)             Giả sử a^2 +b^2 và ab không nguyên tố cùng nhau

                 Khi đó ƯCLN (a^2+b^2 ,ab)=d thuộc N  (d khác 1)

                 Do vậy d chia hết cho p (với p là số nguyên tố)

                 Suy ra a^2 + b^2 chia hết cho p và ab chia hết cho p  

                 Suy ra a chia hết cho p hoặc b chia hết cho p

                 TH1:

                  a chia hết cho p suy ra a^2 chia hết cho p mà a^2 +b^2 chia hết cho p

                  Suy ra b^2 chia hết cho p. Vậy b chia hết cho p

                  Suy ra p thuộc  ƯC(a,b)

                  Mà a và b nguyên tố cùng nhau nên p=1

                  Mà p là số nguyên tố nên p không thể bằng 1. Trường hợp này vô lí

                  TH2: Làm tương tự như TH1  nhưng đổi thành b chia hết cho p rồi chứng minh TH2 vô lí.

                  Vậy điều giả sử là sai 

                  Suy ra a^2 +b^2 và ab nguyên tố cùng nhau