\(\sqrt{6-2\sqrt{5}}\)- ​ ​
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Cách 1 :\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}-\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\)

\(=|\sqrt{5}-\sqrt{1}|-|\sqrt{5}+\sqrt{1}|=\sqrt{5}-\sqrt{1}-\sqrt{5}-\sqrt{1}=-2\)

Cách 2 \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(< =>A^2=6-2\sqrt{5}-6-2\sqrt{5}+2\sqrt{36-20}\)

\(< =>A^2=8-2\sqrt{5}-2\sqrt{5}=8-2\left(2\sqrt{5}\right)=8-4\sqrt{5}\)

<=>...

6 tháng 8 2020

\(B=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{2}+\sqrt{1}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\sqrt{17+12\sqrt{2}}-\left(\sqrt{2}+1\right)\sqrt{17-12\sqrt{2}}}{\sqrt{17^2-\left(12\sqrt{2}\right)^2}}\)

tự làm tiếp đi , mình lười viết

19 tháng 6 2019

a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)

Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

7 tháng 8 2018

a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)

\(A=\sqrt{1}\)

\(A=1\)

b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)

\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)

\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)

\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)

\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)

c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)

\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)

\(C=14-8\sqrt{5}+\sqrt{6}\)

\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

2 tháng 6 2017

Ta có:

\(x^3=6+3x.\sqrt[3]{9-8}\Leftrightarrow x^3-3x=6\)

\(y^3=34+3y\sqrt[3]{17^2-12^2.2}\Leftrightarrow y^3-3y=34\)

=>B = 6 + 34 + 2017 =2057

19 tháng 9 2019

Ta có:

x3=6+3x.3√9−8⇔x3−3x=6

y3=34+3y3√172−122.2⇔y3−3y=34

Nên ta suy ra được => B = 6 + 34 + 2017 =2057
Chúc bạn học tốt :)))

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)