K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)

P là số nguyên tố lớn hơn 3

=> p không chia hết cho 3

=> p chia 3 dư 1 hoặc p chia 3 dư 2

=> p=3K+1 hoặc p=3K+2       (K\(\in\)\(ℕ^∗\))

+ p=3K+1

(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)

+p=3K+2

(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)

Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)

Ta có: p nguyên tố lớn hơn 3

=> P là số lẻ

p-1 là số chẵn

p+1 là số chẵn

=> (p-1).(p+1) chia hết cho 8 (b) 

Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24

12 tháng 11 2018

abcd=ab*100 +cd =ab*99+ab+cd

Có ab*99 chia hết cho 11

     ab+cd chia hết cho 11 

=>abcd chia hết cho 11

12 tháng 11 2018

abcd=100ab + cd =99ab +ab +cd 

ab+cd chia hết cho 11 

99ab=11.9.ab chia hết cho 11

=>abcd chia hết cho 11

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

25 tháng 10 2017

a) A = 2n +1 => A là số lẻ \(\Rightarrow⋮̸\)( không chia hết ) 2

b) A có thể chia hết cho 5 , A có thể không chia hết cho 5

25 tháng 10 2017

Ghi giải ra luôn bạn!

8 tháng 4 2018

gọi số cần tìm là a.ta có:a=4n+3

                                         =17m+9

                                         =19k+13

\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)   

                       \(=17m+9+25=17m+34=17\left(m+2\right)⋮17\) 

                         \(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)

\(\Rightarrow a+25⋮17,4,19\)

\(\Rightarrow a+25⋮1292\)

\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)

do 1267<1292 nên số dư của phép chia là 1267

2,

gọi ƯCLN[2n+1,2n(n+1)] là d

\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)

\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

\(\Rightarrow n⋮d\)

MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

suy ra đpcm

8 tháng 4 2018

thank you bạn nhiều nha !!!!!!!!!!!!

3 tháng 7 2016

Ta có: 

A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2

=> n.(n + 1) + 1 không chia hết cho 2

=> A không chia hết cho 2 (đpcm)

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

Ủng hộ mk nha ^_-

3 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)  \(\left(n\in N\right)\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

5 tháng 10 2016

a) Ta có: 20 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư ( 20)

Mà Ư(20) = { 1;-1;2;-2;4;-4;5;-5;10;-10;20;-20;20}

Ta lập được bảng:

2n+11-12-24-45-510-1020-20
n0-11/2-3/23/2-5/22-39/2-11/219/2-21/2

Câu b: Làm tương tự

22 tháng 2 2021

a, n-4 chia hết cho n-1

Vì n-1 \(_⋮\)n-1 nên 3\(_⋮\)n-1

\(\Rightarrow\)n-1 \(_{\in}\)Ư(3) 

Ư(3)={1;-1;3;-3}
n-1-1-313
n0-24

Vậy n\(_{\in}\){0;2;-2;4}

b, n-2 chia hết cho n+1

Ta có: n-2=n+1-3

\(\Rightarrow\)n-1+3\(_⋮\)n+1

\(\Rightarrow\)3\(_⋮\)n+1

\(\Rightarrow\)n+1\(_{\in}\)Ư(3)

Ư(3)={1;-1;3;-3}

n+11-13-3
n0-22-4

Vậy n\(_{\in}\){0;-2;2;-4}

22 tháng 2 2021

lớp 6 thì me chịu me mới lớp 5 hà ^^!