
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.


a + 4b chia hết cho 13 => 3( a + 4b ) chia hết cho 13
Ta có : 3(a + 4b) + (10a + b) = 3a +12b +10a + b = 13a + 13b = 13(a+b) chia hết cho 13
Mà 3(a +4b) chia hết cho 13 nên 10a + b chia hết cho 13
nha An Nguyễn Thiên ^_^
a + 4b chia hết cho 13 => 3(a + 4b) chia hết cho 13
Ta có: 3(a + 4b) + (10a + b) = 3a + 12b + 10a + b = 13a + 13b = 13(a + b) chia hết cho 13
Mà 3(a + 4b) chia hết cho 13 nên 10a + b chia hết cho 13

ta có a^2+b^2= (a+b)^2 -2ab chia hết cho 7 nên avà b đều chia hết cho 7


Có : \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=7\left(a^2-ab+b^2\right)⋮7\)
Vậy ........

Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)
Đặt \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)
Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)
Xét r với lần lượt các giá trị 1;2;3.
Từ đó ta suy ra được \(a^3=7l⊥1\)
Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)
Vậy........
=a ( a^3+1) (a^3-1 )
= a( a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1-7)(a^2+a+1)
+7a(a-1)(a+1)(a^2+a-1)
=a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7)
+7a(a-1)(a+1)(a^2+a-1)
+7a(a-1)(a+1)(a^2-a-6)
Ta có: 7a(a-1)(a+1)(a^2+a-1)+7a(a-1)(a+1)(a^2-a-6) chia hết cho 7( cùng có nhân tử 7)
Ta cần chứng minh: a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7) chia hết cho 7
Ta có: a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7)
=a(a-1)(a+1) [(a+2)(a-3) [(a-2)(a+3)]
=(a-3)(a-2)(a-1) a(a+1)(a+2)(a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7